L. E. J. Brouwer
Vikipedi, özgür ansiklopedi
Matematiği sezgisel olarak kurmayı amaçlayan bu okul esas olarak Luitzen Egbertus Jan Brouwer (1881-1966)’in ortaya koyduğu sistemdir. Cantor’un kümeler kuramına dayalı yapıyı şiddetle yadsırken, Russell’in usbilimselliğine de karşı durur. Tartışma, “akıl oyunları”nın sergilendiği görkemli bir tiyatroya dönüşür. Sergilenen oyuna seyirciler de katılır…
Poincare matematiğin temellerini varsayımlara dayamak isterken, Kronecker teolojiye sığınıyordu.
Gödel diye biri! Bir M matematik sisteminde iki nitelik ararız. Birincisi, tamlık (completeness): İçindeki her teorem ispatlanabiliyorsa sistem tamdır. Başka bir deyişle, sistemdeki her p önermesi için ya ‘p doğrudur’ ya da ‘p yanlıştır’ teoremlerinden biri ispatlanabiliyorsa M sistemi tamdır. İkincisi, tutarlılık (çelişkisizlik): M sistemindeki her p önermesi için ya ‘p doğrudur’ ya da ‘p yanlıştır’ teoremlerinden ancak birisi geçerliyse M sistemi tutarlı, her ikisi aynı anda varsa M sistemi tutarsızdır.
1931 yılında Kurt Gödel (1906-1978) ortaya çıkıp ortalığı toz dumana katana kadar Hilbert’in formal sisteminin matematikteki krizi tamamen çözdüğü sanılıyordu. Tamamlanamazlık (incompleteness) teoremi adını verdiği teorem, bir sistemin tutarlı olup olmadığının o sistem içinde kanıtlanamayacağını söylüyordu. Bu sonuç, matematiğin tutarlı olduğunun kanıtlanamayacağının kanıtıydı. Dolayısıyla, kendi içinde kapalı bir sistem oluşturduğu sanılan Hilbert formalizminin çöküşü anlamına geliyordu. O zamana kadar kimse Hilbert’in yanılmış olabileceğini düşünmüyordu. Dahi matematikçi von Neumann bile Gödel’in yaptığını öğrenince “Yanıldım, gemiyi kaçırdım!” diye hayıflanmıştır. Principia Mathematica, Organon’dan sonra usbilimde yazılan en büyük yapıt sayılıyor, demiştik. Benzer olarak, Kurt Gödel, Aristoteles’ten sonra gelmiş en büyük usbilimci ününü kazanmıştır.