Van der Corput sequence
From Wikipedia, the free encyclopedia
- The correct title of this article is van der Corput sequence. The initial letter is shown capitalized due to technical restrictions.
A van der Corput sequence is a low-discrepancy sequence over the unit interval first published in 1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base n representation of the sequence of natural numbers (1, 2, 3, …). For example, the decimal van der Corput sequence begins:
- 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …
whereas the binary van der Corput sequence can be written as:
- 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …
or, equivalently, as:
The elements of the van der Corput sequence (in any base) form a dense set in the unit interval: for any real number in [0, 1] there exists a subsequence of the van der Corput sequence that converges towards that number. They are also uniformly distributed over the unit interval.
[edit] See also
[edit] References
- J. G. van der Corput, Verteilungsfunktionen. Proc. Ned. Akad. v. Wet., 38:813–821, 1935.