New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
User:X42bn6/Working On/Telescoping series - Wikipedia, the free encyclopedia

User:X42bn6/Working On/Telescoping series

From Wikipedia, the free encyclopedia


Info This article is a rewrite of Telescoping series. Feel free to make changes or discuss them at the talk page.

In mathematics, telescoping series is an informal expression referring to a series whose sum can be found by exploiting the circumstance that nearly every term cancels with a succeeding or preceding term. The method of cancelling is also known as the method of differences or the method of differencing. When doing the method of differences, the process as a verb is known as telescoping or, loosely, differencing.

It is based largely upon the following:

\sum^N_{n=a}\left(f(n)-f(n-1)\right)=f(N)-f(a-1)

where f is a function that is continuous over the summation period (a to N), and is suitable for negative values of n; and a is an integer where the summation starts (usually taking the value 0 or 1). Note that the final expression will not always contain two parts. Some will contain 4 or 6, or even more. It will always be an even number because one part is cancelled at the start and at the bottom.

Telescoping is possible for the following expressions:

\frac{1}{2}\sum^N_{n=1}\left(n(n+1)-(n-1)n\right)

Alternatively, if it will follow

\sum^N_{n=a}\left(f(n)-f(n-1)\right)=f(N)-f(a-1)

then telescoping is possible.

Contents

[edit] Examples

[edit] Sums of integers raised to a power

One of the most useful ways of the method of differences is working the expressions for the sums of N integers to an integer power. This requires the power to be written in such a way that can be differenced.

For example, the sum of N consecutive integers,

\sum^N_{n=1}n

is an arithmetic progression with first term 1 and common difference 1. The sum can be found using:

\sum^N_{n=1} n=\frac{N}{2}(2a+(N-1)d)

but because a, the first term, and d, the common difference are both equal to zero, this reduces to:

\sum^N_{n=1} n=\frac{1}{2}N(N+1).

However, by using the identity:

2N = N(N + 1) − (N − 1)N

we can telescope this to also deduce the formula for N consecutive integers.

\sum^N_{n=1}n =\frac{1}{2}\sum^N_{n=1}(n(n+1)-(n-1)n)
=\frac{1}{2}(1\cdot 2-0\cdot 1+2\cdot 3-1\cdot 2+\cdots+(N-1)N-(N-2)(N-1)+N(N+1)-(N-1)N)
=\frac{1}{2}N(N+1)

Similarly,

\sum^N_{n=1}n^2

Consider:

n^3-(n-1)^3\equiv 3n^2-3n+1

The left-hand side can be telescoped. The right hand side cannot be telescoped, but can simply be written as sums.

For the left-hand side,

\sum^2_{n=r}(r^3-(r-1)^3) =n^3-(n-1)^3+(n-1)^3-(n-2)^3+\cdots+2^3-1^3
= n3 − 1

Therefore,

n3 − 1 =\sum^N_{n=1}(3n^2-3n+1)
=\sum^N_{n=1}3n^2-\sum^N_{n=1}3n+\sum^N_{n=1}1
=3\sum^N_{n=1}n^2-3(\frac{1}{2}n(n+1))+n
3\sum^N_{n=1}n^2 =n^3-1-3(\frac{1}{2}n(n+1))-n
=n^3-n-\frac{3n}{2}(n+1)-1
=n(n^2-1-\frac{3}{2}(n+1))-1

[edit] Polynomials in the denominator

Consider the expression:

\sum^N_{n=0} \frac{1}{(n+1)(n+2)}.

By partial fractions, we get:

\sum^N_{n=0}\left(\frac{1}{n+1}-\frac{1}{n+2}\right).

Then, by writing out the first few terms and the last few terms, we get:

\sum^N_{n=0}\frac{1}{(n+1)(n+2)} =\sum^N_{n=0}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)
=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{N-1}-\frac{1}{N}+\frac{1}{N}-\frac{1}{N+1}+\frac{1}{N+1}-\frac{1}{N+2}
=\frac{1}{1}-\frac{1}{N+2}
=1-\frac{1}{N+2}


[edit] Trigonometric functions

Many trigonometric functions also admit representation as a difference, which allows telescoping between the consequent terms.

\sum_{n=1}^N \sin\left(n\right) = \sum_{n=1}^N \frac{1}{2} \csc\left(\frac{1}{2}\right) \left(2\sin\left(\frac{1}{2}\right)\sin\left(n\right)\right)
=\frac{1}{2} \csc\left(\frac{1}{2}\right) \sum_{n=1}^N \left(\cos\left(\frac{2n-1}{2}\right)-\cos\left(\frac{2n+1}{2}\right)\right)
=\frac{1}{2} \csc\left(\frac{1}{2}\right) \left(\cos\left(\frac{1}{2}\right)-\cos\left(\frac{2N+1}{2}\right)\right).

[edit] Problems with telescoping

However, notice how the expression:

\sum^N_{n=0}\frac{2n+3}{(n+1)(n+2)}

will work by differencing. By splitting into partial fractions and telescoping, we get:

\sum^N_{n=0}\frac{2n+3}{(n+1)(n+2)} =\sum^N_{n=0}\left(\frac{1}{n+1}+\frac{1}{n+2}\right)
=\frac{1}{1}+\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{N-1}+\frac{1}{N}+\frac{1}{N}+\frac{1}{N+1}+\frac{1}{N+1}+\frac{1}{N+2}
=\infty

Which is untrue, as the sum of N numbers can be found manually, and is finite. The reason is that the plus sign in the summation expression causes telescoping to fail.

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu