New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
ARMA-Modell - Wikipedia

ARMA-Modell

aus Wikipedia, der freien Enzyklopädie

Das Akronym ARMA (AutoRegressive-Moving Average) und die daran angelehnten Kunstwörter ARMAX und ARIMA bezeichnen lineare Modelle für stationäre, zeitdiskrete stochastische Prozesse. Sie werden zur Zeitreihenanalyse in der Messtechnik, in der Statistik und dort insbesondere in der Ökonometrie eingesetzt. Hier sind sie auch unter dem Namen Box-Jenkins-Modelle bekannt. Die Prognosemodelle der Wirtschaftsinstitute und Banken sind in der Regel aus ARMA-Modellen zusammengesetzt. Ihr mathematischer Kern ist ein lineares Gleichungssystem. Man kann solche Modelle auch als Differenzengleichungen bzw. Differenzengleichungssysteme ansehen.

Inhaltsverzeichnis

[Bearbeiten] Mathematische Definition eines ARMA-Prozesses

In das Modell fließen Rauschterme und gewichtete frühere Werte der Zeitreihe linear ein. ARMA-Modelle sind eines der Hauptwerkzeuge zur Vorhersage von beobachteten, stochastischen Signalen. Sind die zu modellierenden Signale nicht stationär, dann muss man sie gegebenenfalls vor der Modellierung differenzieren, um den Trend zu beseitigen.

[Bearbeiten] MA-Modell

y_t=\sum_{j=0}^m b_j \epsilon_{t-j}

Das Signal setzt sich aus einem durch gleitendes Mittel (=Moving Average) der Länge m geglätteten Signal einer (nicht direkt messbaren) anderen Zeitreihe und einem Rauschterm (j=0) zusammen.

Siehe auch: FIR-Filter

[Bearbeiten] AR-Modell

y_t=\epsilon_t + \sum_{i=1}^n a_i y_{t-i}

Das Signal setzt sich aus einem geglätteten Signal seiner n vorhergehenden Werte und einem Rauschterm zusammen.

Siehe auch: IIR-Filter (Infinite Impulse Response-Filter)

[Bearbeiten] ARMA-Modell

y_t=\epsilon_t + \sum_{i=1}^n a_i y_{t-i} + \sum_{j=1}^m b_j \epsilon_{t-j}

Dieses Modell wird auch als ARMA(n,m)-Modell bezeichnet, wobei n und m die Ordnung des Prozesses heißen.
Mit Hilfe des so genannten Verschiebungsoperators L (von lag=Zeitverschiebung):

Ldxt = xtd

schreibt man kürzer auch:

(1 + φ(L))yt = (1 + θ(L))εt

wobei φ und θ beides endliche Polynome (der Grade n und m) darstellen:

\phi(x) = \phi_1 x+ \cdots + \phi_n x^n

[Bearbeiten] Inhaltliche Interpretation: Was ist MA und was ist AR?

[Bearbeiten] Moving Average

εt ist ein s.g. weißes Rauschen, eine Zufallsvariable, die für alle t gleich verteilt ist mit Erwartungswert μ und der Varianz σ2. Die Abhängigkeit beschränkt sich bei MA-Termen auf den Erwartungswert: Ist

Y_t=\alpha \sum_{j}^{} \epsilon_{t-j}

dann wird lediglich der Erwartungswert von Y mit jedem Zeitschritt um αμ verschoben. Yt selbst ist stochastisch bestimmt.

[Bearbeiten] Auto-Regression

Anders beim Auto-Regressionsteil: Hier ist Yt deterministisch von der Vergangenheit abhängig. In

Yt = Yt − 1 + ε

unterliegt Yt genau dann einer Störung, wenn Yt − 1 einer Störung unterliegt.

[Bearbeiten] ARMA-Modelle in der Statistik

Regressionsmodelle spielen in der Statistik eine große Rolle. In der Ökonometrie müssen oft mehrere Zeitreihen der Form x1(t),x2(t)...xn(t) miteinander in Zusammenhang gebracht werden, die s.g. Wirtschaftsindikatoren, also z.B. Zins, Arbeitslosigkeit, Investitionen usw. Man unterscheidet zwischen endogenen zeitabhängigen Variablen Y(t) (die also vom Modell erklärt werden) und exogenen Variablen X(t), die von außen definiert werden. Mit ihnen kann man das allgemeine lineare Gleichungssystem (LGS)

BY = AX + ε

formulieren. B,Y,A und X sind Matrizen mit sovielen Zeilen wie Beobachtungen und sovielen Spalten wie Variablen des jeweiligen Typs. Jeder Zeitpunkt zählt als Beobachtung. Geht einunddieselbe Variable zu verschiedenen Zeitpunkten (also als Y(t), Y(t-1) usw.) in das LGS ein, so zählt dies als mehrere Variablen. Die Gleichung Y(t) = β1Y(t − 1) + β2Y(t − 2) + ε hat also drei Variablen. Das ist entscheidend für die ARMA-Modelle. ε ist ein Vektor mit sovielen Zeilen wie Beobachtungen.

[Bearbeiten] ARMAX und ARIMA

Ist der Regressor X dabei, spricht man von ARMAX-Modellen. Gehen nur die (diskreten) Ableitungen von Y in das Modell ein, so dass hinterher die Modellprognosen wieder integriert werden müssen, so spricht man von ARIMA-Modellen, das I steht für "Integrated".

Alle Modelle der ARMA-Familie haben dieses LGS zur Grundlage. Viele LGS können mit einer einfachen linearen Regression (LR) geschätzt werden. Voraussetzung, dass die Standardfehler der Schätzer unverzerrt sind, ist, dass die Störterme ε von Y nicht autokorrelieren, da Korrelation der Fehler untereinander zwar nicht den Schätzer selbst, jedoch den zugehörigen Standardfehler verzerrt (meist wird er stark unterschätzt). Wenn Autoregressionsterme der Form

y_t=\epsilon_t + \sum_{i=1}^n a_i y_{t-i}

vorliegen, liegt in der Regel eine solche Autokorrelation der Störterme vor.

[Bearbeiten] Interpretation des Moving Average-Teils

Man sollte das LGS daher um einen Term der Form

\epsilon=\sum_{j=0}^m \gamma_j \epsilon_{t-j}+\epsilon',

also um eine Autoregression der Fehlerterme erweitern. Praktisch spielen vor allem Erweiterungen der Ordnung 1:

ε = γ1εt − 1 + ε'

eine Rolle. Das ist ein Markow-Prozess.

Der Begriff "MA" für solche rein stochastischen Prozesse ist eher irreführend. ARMA-Modelle sind also Simultan-Modelle für deterministische Zusammenhangsmodelle (AR-Anteil, entspricht Regressionsmodell) und stochastischen Prozessen (MA-Anteil).

ARMA-Modelle (auch ARMAX, ARIMA) werden durch nichtlineare Regressionsverfahren geschätzt.

[Bearbeiten] Siehe auch

Yule-Walker-Gleichungen, Autokorrelation, Digitales Filter, VARMA, X-12-ARIMA

[Bearbeiten] Literatur

BOX, G.E.P. and JENKINS, G.M. (1970) Time series analysis: Forecasting and control, San Francisco: Holden-Day

McCLEARY, R. and HAY, R.A. (1986) Applied Time Series Analysis for the Social Sciences, Beverly Hills: Sage Publications

HAMILTON, James D. (1994) Time Series Analysis, Princeton: Princeton University Press

ENDERS, W. (1995) Applied Econometic Time Series, John Wiley & Sons INC.

MILLS, Terence C. (1999) The Econometric Modelling of Financial Time Series, 2nd Edition, Cambridge University Press

TSAY, Ruey S. (2005) Analysis of Financial Time Series, 2nd Edition, Wiley Series in Prob. and Statistics

Stier, W. (2001) Methoden der Zeitreihenanalyse, Springer

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu