Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Möbiustransformation - Wikipedia

Möbiustransformation

aus Wikipedia, der freien Enzyklopädie

Eine Möbiustransformation bezeichnet in der Mathematik eine konforme Abbildung der Riemannschen Zahlenkugel auf sich selbst. Sie ist benannt nach August Ferdinand Möbius.

Die allgemeine Formel der Möbiustransformation ist gegeben durch

\phi: z \mapsto \frac{a z + b}{c z + d},

wobei a,b,c,d komplexe Zahlen sind, die a d - bc \neq 0 erfüllen.

Inhaltsverzeichnis

[Bearbeiten] Abbildung

Durch die Erweiterung \mathbb{C}\cup\{ \infty\} der komplexen Ebene durch einen Punkt im Unendlichen ist die Abbildung unter der Riemannschen Zahlenkugel auch für den Wert z = − d / c definiert, der auf \infty abgebildet wird. \infty wiederum wird für c \neq 0 auf a / c abgebildet, ansonsten auf sich selbst.

Die Umkehrabbildung ist gegeben durch

\phi^{-1}: z \mapsto \frac{d z - b}{-c z + a}.

Da mit d a - (-c) (-b) = a d - b c \neq 0 gilt, ist φ − 1 wiederum eine Möbiustransformation.

[Bearbeiten] Elementartypen

Eine Möbiustransformation kann durch eine geeignete Komposition aus Transformationen der folgenden drei Elementartypen gewonnen werden:

  • Verschiebung (Translation): Die Verschiebung um den Vektor b wird durch die Abbildung V_b: z \mapsto z + b beschrieben.
  • Drehstreckung: Mit der komplexen Zahl a = \left|a\right| e^{\mathrm{i}\,\alpha} (mit \alpha\in\R) beschreibt die Abbildung D_a:z\mapsto a\cdot z eine Streckung um den Faktor \left|a\right| kombiniert mit einer Drehung um den Winkel α.
  • Inversion: Die Inversion wird durch die Abbildung I:z\mapsto \frac{1}{z} beschrieben. Für ein Gitter lässt sich die Inversion wie folgt veranschaulichen:

Veranschaulichung der Inversion anhand eines Gitters.

Die reelle Achse Im(z) = 0 sowie die imaginäre Achse Re(z) = 0 werden dabei (allerdings nicht punktweise) auf sich selbst abgebildet. Die anderen senkrechten und waagerechten Geraden werden in Kreise überführt.

[Bearbeiten] Komposition durch Elementartypen

Eine Möbiustransformation \phi:z\mapsto\frac{az+b}{cz+d} lässt sich nun vermöge der Darstellung

\frac{az + b}{cz + d} = \frac{a}{c} + \frac{\mu}{cz + d} mit \mu = \frac{bc - ad}{c}

wie folgt aufbauen:

z \quad {\mapsto_{D_c}} \quad cz \quad \mapsto_{V_d} \quad cz + d \quad \mapsto_{I} \quad \frac{1}{cz + d} \quad \mapsto_{D_{\mu}} \quad \frac{\mu}{cz + d} \quad \mapsto_{V_{a/c}} \quad \frac{a}{c} \,+\, \frac{\mu}{cz + d} \;=\; \phi(z).

[Bearbeiten] Die Gruppe der Möbiustransformationen

Die Menge aller Möbiustransformation bildet eine Gruppe: Die Hintereinanderausführung zweier Möbiustransformationen ist nämlich wieder eine Möbiustransformation, ebenso ist die inverse Abbildung einer Möbiustransformationen eine solche. Diese Gruppe ist isomorph zur \mathrm{PSL}(2,\mathbb C)=\mathrm{PGL}(2,\mathbb C): Jede komplexe 2×2-Matrix mit Determinante ungleich 0 ergibt eine Möbiustransformation, und zwei solche Matrizen stellen genau dann die gleiche Transformation dar, wenn sie komplexe Vielfache voneinander sind. Da \mathrm{GL}(2,\mathbb C) komplex vierdimensional ist und eine Dimension herausgeteilt wird, besitzt die Gruppe der Möbiustransformationen die Dimension 3.

[Bearbeiten] Möbiustransformation als Automorphismus der Riemannschen Zahlenkugel

Diese Art von Transformationen ist wichtig in der Funktionentheorie, da jede bijektive konforme Abbildung der komplexen Ebene (mit Unendlich) eine Möbiustransformation ist. Äquivalent dazu ist die Aussage, dass jede bijektive konforme Selbstabbildung der Riemannschen Zahlenkugel eine Möbiustransformation ist.

Aus diesem Grund ist die Gruppe der Möbiustransformationen auch genau die Isometriegruppe des 3-dimensionalen hyperbolischen Raums \mathbb{H}^3: Dieser besitzt als Rand im Unendlichen die Riemannsche Zahlenkugel. Eine Isometrie des hyperbolischen Raumes entspricht eindeutig einer konformen bijektiven Selbstabbildung des Randes im Unendlichen und umgekehrt.

Die Beziehung zwischen Rand im Unendlichen und hyperbolischen Raum sieht man am einfachsten im oberen Halbraummodell \mathbb{C}\times[0,\infty).

Entsprechend erhält man die Isometrien der hyperbolischen Ebene \mathbb{H}^2 als konforme Abbildungen der kompaktifizierten reellen Geraden \mathbb P^1(\mathbb{R})=\mathbb{R}\cup\{\infty\}. Dies sind die reellen Möbiustransformationen, die wie oben nur mit a,b,c,d\in \mathbb{R} definiert sind.

[Bearbeiten] Transitivitätseigenschaften

Eine Möbiustransformation wird eindeutig dadurch festgelegt, dass man für drei beliebige komplexe Zahlen die Werte der Funktion festlegt.

Die Gruppe der Möbiustransformationen operiert scharf dreifach transitiv auf dem Körper der komplexen Zahlen (mit Unendlich).

[Bearbeiten] Geometrische Eigenschaften

Neben der Konformität der Möbiustransformationen und der Erhaltung des Doppelverhältnisses, ist die Kreistverwandtschaft eine weitere geometrische Invariante, d.h. Kreise auf der Riemannschen Zahlenkugel werden unter diesen Abbildungen auf Kreise auf der Sphäre abgebildet; im allgemeinen jedoch nicht punktweise. Ein interessantes Entscheidungskriterium liefert ein Satz aus der Funktionentheorie: Durch drei verschiedene Punkte der Sphäre verläuft genau eine Kreislinie. Genau dann liegt ein Punkt auf dieser speziellen Kreislinie, wenn das Doppelverhältnis der vier Punkte reellwertig oder den Wert unendlich annimmt.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu