Mandelbrot-Menge
aus Wikipedia, der freien Enzyklopädie
Die Mandelbrot-Menge, im allgemeinen Sprachgebrauch oft auch Apfelmännchen genannt, ist ein Fraktal, das in der Chaostheorie eine bedeutende Rolle spielt. Es wurde 1980 von Benoît Mandelbrot erstmals computergrafisch dargestellt und untersucht. Die mathematischen Grundlagen dafür wurden bereits 1905 von dem französischen Mathematiker Pierre Fatou erarbeitet.
Außerhalb der Fachwelt wurde die Mandelbrot-Menge vor allem durch den hohen ästhetischen Reiz dieser Computergrafiken bekannt, der durch geschickte Farbgestaltung des Außenbereichs, der nicht zur Menge gehört, noch erhöht wird. Die Mandelbrot-Menge wird oft als das formenreichste geometrische Gebilde bezeichnet, das überhaupt bekannt ist. Dieser außerordentliche Formenreichtum zeigt sich an stark vergrößerten Ausschnitten des Randes, die überdies schöne Beispiele für das Konzept der Selbstähnlichkeit bei Fraktalen liefern. Trotz dieser offensichtlichen hohen inneren Ordnung wurde die Mandelbrot-Menge zum Symbol für das mathematische Chaos, welches sich allerdings von Chaos im umgangssprachlichen Sinne grundsätzlich unterscheidet.
Die Bezeichnung „Apfelmännchen“ korrespondiert mit der geometrischen Grobform einer um 90 Grad nach rechts gedrehten Mandelbrotmenge. Möglicherweise hat auch die Bezeichnung APPLEMAN für ein frühes Programm auf einem Apple-Computer zur Verbreitung dieser Bezeichnung beigetragen. Dabei standen im Rahmen eines Wortspiels APPLE für die Computermarke und MAN für eine Abkürzung von „Mandelbrot“.
Inhaltsverzeichnis |
[Bearbeiten] Definition
[Bearbeiten] Definition über Rekursion
Die Mandelbrot-Menge ist die Menge aller komplexen Zahlen c, für welche die rekursiv definierte Folge komplexer Zahlen z0, z1, z2, ... mit dem Bildungsgesetz
- zn+1 := zn2 + c
und der Anfangsbedingung
- z0 := 0
beschränkt bleibt, das heißt, der Betrag der Folgenglieder wächst nicht über alle Grenzen. Die grafische Darstellung dieser Menge erfolgt in der komplexen Ebene. Die Punkte der Menge werden dabei in der Regel schwarz dargestellt und der Rest farbig, wobei die Farbe eines Punktes den Grad der Divergenz der zugehörigen Folge widerspiegelt (siehe unten).
[Bearbeiten] Definition über Julia-Mengen
Die Mandelbrot-Menge wurde von Benoît Mandelbrot ursprünglich zur Klassifizierung von Julia-Mengen eingeführt, die bereits Anfang des 20. Jahrhunderts von den französischen Mathematikern Gaston Maurice Julia und Fatou untersucht wurden. Die Julia-Menge Jc zu einer bestimmten komplexen Zahl c ist definiert als der Rand der Menge aller Anfangswerte z0, für die die obige Zahlenfolge beschränkt bleibt. Man kann beweisen, dass die Mandelbrot-Menge genau die Menge der Werte c ist, für die die zugehörige Julia-Menge Jc einfach zusammenhängend ist.
[Bearbeiten] Verallgemeinerte Mandelbrot-Mengen
Im allgemeinen Sprachgebrauch wird die oben definierte Menge als die Mandelbrot-Menge bezeichnet. Verwendet man anstelle des obigen Bildungsgesetzes die Rekursionsregel
- zn+1 := fc(zn)
mit einer von einem komplexen Parameter c abhängige Abbildung fc innerhalb der komplexen Zahlen, so lässt sich in analoger Weise eine zu dieser Abbildung gehörige Mandelbrot-Menge und entsprechende Julia-Mengen definieren. Der Startwert z0 muss ein kritischer Punkt sein, das heißt, es muss f'c(z0)=0 gelten.
Dieses Verfahren kann auch für Funktionen mit mehr als einem komplexen Parameter c erweitert werden. Allerdings ist dann eine grafische Darstellung in zwei Dimensionen ohne Projektion nicht mehr möglich.
Die folgenden Ausführungen beziehen sich nur auf die üblicherweise betrachtete Mandelbrot-Menge.
[Bearbeiten] Geometrische und mathematische Eigenschaften
Der ungeheure Formenreichtum der Mandelbrot-Menge erschließt sich aus dem Bezug zu Julia-Mengen. Julia-Mengen zu c-Werten aus dem Randbereich der Mandelbrot-Menge sind Fraktale. Die Formen dieser fraktalen Strukturen sind innerhalb einer Julia-Menge stets die gleichen, umspannen aber für Julia-Mengen zu verschiedenen c-Werten einen enormen Formenreichtum. Es zeigt sich, dass die Strukturen der Mandelbrot-Menge in der Umgebung eines bestimmten Wertes c genau jene Strukturen der zugehörigen Julia-Menge Jc wiedergeben. Damit enthält die Mandelbrot-Menge den kompletten Formenreichtum der unendlich vielen Julia-Mengen (s. u.).
In den fraktalen Strukturen am Rand findet man verkleinerte ungefähre Kopien der gesamten Mandelbrot-Menge, so genannte Satelliten. Jeder Bildausschnitt der Mandelbrot-Menge, der sowohl Punkte aus als auch solche außerhalb umfasst, enthält unendlich viele dieser Satelliten. Es zeigt sich, dass unmittelbar am Rand eines Satelliten fast die gleichen Strukturen auftreten wie an den entsprechenden Stellen des Originals. Diese Strukturen sind jedoch nach weiter außen hin mit den Strukturen kombiniert, die für die größere Umgebung des Satelliten typisch sind. Diese Situation wird gelegentlich mit der eines biologischen Organismus und seiner Gene verglichen. Danach entspricht jedem Satelliten die Erbsubstanz einer Zelle, die den Bauplan für den kompletten Organismus enthält, während nach außen hin nur die Strukturen des lokalen Organs exprimiert sind. Es handelt sich dabei jedoch um ein rein formales Gleichnis ohne kausalen Hintergrund.
Da jeder Satellit wiederum mit Satelliten höherer Ordnung bestückt ist, lässt sich immer eine Stelle finden, an der eine beliebige Anzahl beliebiger verschiedener Strukturen in beliebiger Reihenfolge kombiniert auftritt. Diese Strukturen sind dann allerdings nur bei extremer Vergrößerung erkennbar.
Die Mandelbrot-Menge ist spiegelsymmetrisch zur reellen Achse. Sie ist einfach zusammenhängend, das heißt sie bildet weder Inseln noch hat sie Löcher. Ihre fraktalen Strukturen sind zwar selbstähnlich, es gibt aber keine zwei Teilstrukturen, die exakt gleich sind.
Da die Mandelbrot-Menge Kardioid- und Kreisflächen enthält, hat sie die fraktale Dimension zwei. Der Rand der Mandelbrot-Menge hat eine unendliche Länge, und seine Hausdorff-Dimension beträgt ebenfalls zwei. Numerische Annäherungen legen dies auch für die Box-Dimension nahe. Das bedeutet jedoch nicht, dass der Rand auch eine endliche Fläche hat, obwohl dies eine Zeit lang vermutet wurde. Die Fläche der Mandelbrot-Menge ist nicht einfach zu bestimmen und beträgt etwa 1,506.
Die Frage, ob die Mandelbrotmenge entscheidbar ist, gibt zunächst keinen Sinn, da überabzählbar ist. Ein Ansatz, den Begriff der Entscheidbarkeit auf überabzählbare Mengen zu verallgemeinern, stellt das Blum-Shub-Smale-Modell dar. Innerhalb dessen ist die Mandelbrotmenge nicht entscheidbar.
[Bearbeiten] Bildergalerie einer Zoomfahrt
Die folgende exemplarische Bildersequenz einer Zoomfahrt an eine bestimmte Stelle c gibt einen Eindruck vom geometrischen Formenreichtum und erläutert gewisse typische Strukturelemente. Die Vergrößerung im letzten Bild beträgt etwa 1 zu 60 Milliarden. Bezogen auf einen üblichen Computerbildschirm stellt es daher einen Ausschnitt eines Apfelmännchens von grob 20 Millionen Kilometern Durchmesser dar, dessen Rand in dieser Auflösung eine unvorstellbare Fülle verschiedenster fraktaler Strukturen aufweisen würde.
- Startbild: Die Mandelbrot-Menge mit stufenlos eingefärbtem Außenraum.
- Ausschnitt 1: Spalte zwischen "Kopf" und "Körper", auch "Tal der Seepferdchen" genannt.
- Ausschnitt 2: Links Doppelspiralen, rechts "Seepferdchen".
- Ausschnitt 3: "Seepferdchen". Der "Körper" wird von 25 "Speichen" gebildet, von denen sich zwei Zwölfergruppen nach Art einer Metamorphose auf jeweils einen der beiden "Finger" an der "oberen Hand" des Apfelmännchens zurückführen lassen. Die Zahl der "Speichen" nimmt daher von einem "Seepferdchen" zum nächsten um zwei zu. Die "Nabe" wird von einem Misiurewicz-Punkt gebildet (s. u.). Zwischen "Oberkörper" und "Schwanz" ist ein deformierter Satellit erkennbar.
- Ausschnitt 4: Der "Seepferdchenschwanz" endet ebenfalls in einen Misiurewicz-Punkt.
- Ausschnitt 5: Teil des "Schwanzes". Der einzige Pfad, der sich durch den gesamten "Schwanz" windet, und damit gewährleistet, dass einfach zusammenhängend ist, führt im Zickzack von einer "Schwanzseite" zur anderen und passiert dabei die "Naben" der großen 25-spiraligen Gebilde.
- Ausschnitt 6: Satellit. Die beiden "Seepferdchenschwänze" bilden den Auftakt für eine Folge von konzentrischen Kränzen mit dem Satelliten im Zentrum.
- Ausschnitt 7: Jeder dieser Kränze besteht aus gleichartigen Strukturelemente, deren Anzahl pro Kranz mit Potenzen von 2 wächst, ein typisches Phänomen in der Umgebung von Satelliten. Der oben erwähnte Pfad durch den "Seepferdchenschwanz" passiert den Satelliten über die Kerbe der Kardioide und die Spitze der "Antenne" auf dem "Kopf".
- Ausschnitt 8: "Antenne" des Satelliten. Auf ihr sind mehrere Satelliten 2. Ordnung erkennbar.
- Ausschnitt 9: "Tal der Seepferdchen" des Satelliten. Es zeigen sich die gleichen Strukturelemente wie in Ausschnitt 1.
- Ausschnitt 10: Doppelspiralen und "Seepferdchen", die jedoch im Unterschied zu Ausschnitt 2 nach außen hin mit seepferdchenschwanzartigen Fortsätzen bestückt sind. Dieses Phänomen demonstriert die für Satelliten n-ter Ordnung typischen Verkettungen von n+1 Strukturelementen für den Fall n=1.
- Ausschnitt 11: Doppelspiralen mit Satelliten 2. Ordnung. Sie lassen sich als Metamorphose der "Antenne" interpretieren.
- Ausschnitt 12: Im Bereich der äußeren Fortsätze sind stets inselartige Strukturen eingestreut, die Julia-Mengen Jc ähneln. Die im Bild größte ist im Zentrum des "Doppelhakens" rechts gerade eben erkennbar.
- Ausschnitt 13: Teil des "Doppelhakens".
- Ausschnitt 14: Diese Inseln scheinen auf den ersten Blick nach Art von Cantor-Mengen wiederum aus unendlich vielen unzusammenhängenden Teilstücken zu bestehen, wie es für die zugehörigen Jc tatsächlich der Fall ist, sie sind jedoch hier über filigrane Strukturen miteinander verbunden. Diese Strukturen gehen von einem Satelliten im Zentrum aus, der bei dieser Vergrößerung noch nicht sichtbar ist, und zwar derart, dass das Ganze ein einfach zusammenhängendes Gebilde ergibt. Der zum entsprechenden Jc gehörige c-Wert ist nicht der des Bildzentrums sondern hat relativ zum Hauptapfelmännchen die gleiche Position wie das Bildzentrum zum Satelliten, der in Ausschnitt 7 dargestellt ist.
Eine Animation zu dieser Zoomfahrt findet sich bei den Weblinks.
[Bearbeiten] Verhalten der Zahlenfolge
Die verschiedenen Strukturelemente von stehen in engem Zusammenhang mit bestimmten Verhaltensweisen der Zahlenfolge, die zugrunde liegt. Je nach Wert von c ergibt sich eine der folgenden vier Möglichkeiten:
- Sie strebt gegen einen festen Wert (Konvergenz).
- Sie konvergiert gegen einen periodischen Grenzzyklus, der aus 2 oder mehr Zahlen besteht.
- Sie zeigt chaotisches Verhalten, das heißt sie wiederholt sich nie, bleibt aber beschränkt.
- Sie strebt gegen Unendlich (bestimmte Divergenz).
Alle c-Werte, die zu den ersten drei Verhaltensweisen führen, gehören zu .
[Bearbeiten] Geometrische Zuordnung
Konvergenz liegt genau für die Werte von c vor, die das Innere der Kardioide bilden, den "Körper" des Apfelmännchens, sowie für abzählbar viele ihrer Randpunkte. Periodische Grenzzyklen findet man in den kreisförmigen "Knospen" wie z. B. im "Kopf", in den Kardioiden der Satelliten, sowie ebenfalls auf abzählbar vielen Randpunkten dieser Komponenten. Eine fundamentale Vermutung besagt, dass es für alle inneren Punkte der Mandelbrotmenge einen Grenzzyklus gibt. Die Folge ist echt vorperiodisch für abzählbar viele Parameter, die oft Misiurewicz-Thurston-Punkte genannt werden. Dazu gehören die "Antennenspitzen", wie z. B. Punkt z=-2 ganz links, und Verzweigungspunkte der Mandelbrotmenge.
In den überabzählbar vielen übrigen Punkten der Mandelbrotmenge kann sich die Folge auf viele verschiedene Weisen verhalten, die jeweils sehr unterschiedliche dynamische Systeme erzeugen, und die teilweise Gegenstand intensiver Forschung sind. Je nach Definition des Wortes kann man "chaotisches" Verhalten finden.
[Bearbeiten] Periodisches Verhalten
[Bearbeiten] Die kreisförmigen Strukturen
Jede kreisförmige "Knospe" und jede Satelliten-Kardioide zeichnet sich durch eine bestimmte Periodizität des Grenzzyklus aus, gegen den die Folge für die zugehörigen c-Werte strebt. Die Anordnung der "Knospen" an der zugehörigen Kardioide folgt dabei den folgenden Regeln, aus denen sich unmittelbar die Periodizitäten ablesen lassen. Jede "Knospe" berührt genau einen Basiskörper, nämlich eine größere "Knospe" oder eine Kardioide.
Die Periodizität einer "Knospe" ist die Summe der Periodizitäten der beiden nächsten größeren "Nachbarknospen" in beide Richtungen am selben Basiskörper, sofern es solche gibt. Gibt es am Rand des Basiskörpers bis zur Kontaktstelle mit dessen Basiskörper bzw. bis zur Kerbe der Kardioide nur kleinere "Knospen", so trägt anstelle der Periodizität einer "Nachbarknospe" die des Basiskörpers selbst zur Summe bei. Daraus leiten sich unmittelbar die folgenden Eigenschaften ab:
- Tendenziell sind die "Knospen" bzw. Kardioiden um so kleiner, je größer ihrer Periodizität ist.
- Die Periodizität der größten "Knospe" an einem Basiskörper beträgt stets das doppelte, wie beispielsweise der "Dutt" mit der Periode 4 am "Kopf".
- Die Periodizität einer "Knospe" eines Satelliten ist das Produkt der Periodizität der Kardioide und der der korrespondierenden "Knospe" der Hauptkardioide.
Ferner erklärt diese Regel das Auftreten bestimmter Folgen von "Knospen" wie beispielsweise vom "Kopf" zur Kardioidkerbe hin mit einer Periodizitätszunahme zur nächsten "Knospe" hin um den Wert 1 oder vom "Arm" zum "Kopf" hin um den Wert 2.
[Bearbeiten] Attraktive Zyklen
Gibt es für ein c ein Folgenglied mit der Eigenschaft zn=z0=0, so wiederholt sich die Folge von Anfang an streng periodisch und zwar mit der Periode n. Da sich zn durch n-malige Anwendung der Iterationsvorschrift ergibt, wobei bei jedem Schritt quadriert wird, lässt es sich als Polynom von c vom Grad 2n-1 formulieren. Die c-Werte für periodische Folgen der Periode n erhält man daher über die 2n-1 Nullstellen dieses Polynoms. Es zeigt sich, dass jede Zahlenfolge gegen diesen Zahlenzyklus konvergiert, sofern eins ihrer Folgenglieder hinreichend nahe an diesen Zyklus gerät. Man spricht von sogenannten Attraktoren.
Das führt dazu, dass auch alle Zahlenfolgen zu einer gewissen Umgebung des c-Wertes, der den Attraktor repräsentiert, gegen einen stabilen Zyklus der Periode n konvergieren. Jede kreisförmige "Knospe" und jede Kardioide eines Satelliten repräsentiert genau eine solche Umgebung. Exemplarisch seien die Gebiete mit den Perioden 1 bis 3 aufgeführt:
- Periode 1: Die Kardioide des Hauptapfelmännchens
- Periode 2: Der "Kopf". Die 2. Nullstelle c=0 entspricht der Hauptkardioide, die wegen der Periode 1 natürlich auch bei der Ermittlung aller höherer Perioden als Nullstelle auftritt. Diese Überlegung zeigt, dass die Zahl der Attraktoren mit der Periode n maximal 2n-1-1 betragen kann, und das auch nur dann, wenn n eine Primzahl ist.
- Periode 3: Die "Knospen", die den "Armen" entsprechen und die Kardioide des größten Satelliten auf der "Kopfantenne". Die 4. Nullstelle c=0 entfällt wieder.
[Bearbeiten] Repulsive Zyklen
Neben attraktiven Zyklen gibt es auch repulsive, die sich dadurch auszeichnen, dass Zahlenfolgen in ihrer Umgebung sich zunehmend von ihnen entfernen. Sie lassen sich jedoch erreichen, da jedes zn abgesehen von der Situation zn-1=0 wegen des Quadrats in der Iterationsvorschrift zwei potenzielle Vorgänger in der Folge hat, die sich nur durch ihr Vorzeichen unterscheiden. c-Werte, für die die zugehörige Folge irgendwann über einen solchen zweiten Vorläufer eines Periodenmitgliedes in einen derartigen instabilen Zyklus mündet, sind beispielsweise die "Naben" der rad- bzw. sprialförmigen Strukturen sowie die Endpunkte der weitverbreiteten antennenartigen Strukturen, die sich formal als "Naben" von "Rädern" oder Spiralen mit einer einzigen Speiche interpretieren lassen. Derartige c-Werte werden auch als Misiurewicz-Punkte bezeichnet.
Ein Misiurewicz-Punkt c hat ferner die Eigenschaft, dass in seiner näheren Umgebung nahezu deckungsgleich mit dem selben Ausschnitt der zugehörige Julia-Menge Jc ist. Je weiter man sich dem Misiurewicz-Punkt nähert, um so besser wird die Übereinstimmung. Da Julia-Mengen für c-Werte innerhalb von zusammenhängend sind und außerhalb von Cantor-Mengen aus unendlich vielen Inseln mit der Gesamtfläche Null, sind sie in der Übergangszone am Rand von besonders filigran. Jeder Misiurewicz-Punkt ist aber gerade ein Randpunkt von , und jeder Ausschnitt der Randzone von , der sowohl Punkte in als auch außerhalb davon enthält, enthält unendlich viele davon. Damit ist der gesamte Formenreichtum sämtlicher Julia-Mengen dieses filigranen Typs in der Umgebung der Misiurewicz-Punkte in repräsentiert.
[Bearbeiten] Satelliten
Ein weiteres Strukturelement, das den Formenreichtum von begründet, sind die Kopien von , die in die filigranen Strukturen am Rand von eingebettet sind. Dabei korrespondiert das Verhalten der Zahlenfolgen innerhalb eines Satelliten in folgender Weise mit dem der Folgen im Hauptkörper. Innerhalb eines Satelliten konvergieren alle Zahlenfolgen gegen Grenzzyklen, deren Perioden sich von denen an den entsprechenden Stellen im Hauptkörper von um einen Faktor p unterscheiden. Betrachtet man für einen bestimmten c-Wert aus dem Satelliten nur jedes p-te Folgenglied, so ergibt sich eine Folge, die bis auf einen räumlichen Maßstabsfaktor nahezu identisch ist mit derjenigen, die sich für den entsprechenden c-Wert im Hauptkörper von ergibt. Die mathematische Begründung hierfür ist tiefliegend; sie entstammt den Arbeiten von Douady und Hubbard über "polynomartige Abbildungen".
Die zusätzlichen Strukturelemente in der unmittelbaren Umgebung eines Satelliten sind eine Folge davon, dass zwischen zwei der betrachteten Folgenglieder mit dem Indexabstand p sich eins mit dem Wert zn=0 befinden kann, das damit einen periodischen Verlauf mit der Periode n begründet. Die entsprechende Folge außerhalb des Hauptkörper divergiert jedoch, da sie keine solchen Zwischenglieder besitzt.
Es handelt sich bei der Mandelbrot-Menge selbst um eine universelle Struktur, die auch bei völlig anderen nichtlinearen Systemen und Klassifizierungsregeln in Erscheinung treten kann. Betrachtet man solche Systeme, die von einem komplexen Parameter c abhängen und klassifiziert ihr Verhalten bezüglich einer bestimmten Eigenschaft der Dynamik in Abhängigkeit von c, dann findet man unter bestimmten Umständen in der Parameter-Ebene kleine Kopien der Mandelbrot-Menge. Ein Beispiel ist die Frage, für welche Polynome dritten Grades das iterative Newton-Verfahren zur Bestimmung von Nullstellen mit einem bestimmten Startwert versagt und für welche nicht.
[Bearbeiten] Intermediär wechselhaftes Verhalten
Durch die Möglichkeit der Zahlenfolge, wiederholt in die unmittelbaren Umgebung eines repulsiven Zyklus zu geraten, und bei dem anschließend tendenziell divergenten oder chaotischen Verhalten wiederum beinahe in einen anderen Zyklus zu geraten, können sich intermediär sehr komplizierte Verhaltensweisen der Folge ausbilden, bis sich der endgültige Charakter der Folge zeigt, wie die beiden Abbildungen demonstrieren. Die Umgebung der zugehörigen c-Werte in ist entsprechend strukturreich. Auch die Darstellung der Folgepunkte selbst in der komplexen Ebene zeigt in diesen Fällen eine größere Komplexität. Das quasiperiodische Verhalten in der Nachbarschaft eines repulsiven Zyklus führt in diesen Fällen oft zu spiralförmigen Strukturen mit mehreren Armen, wobei die Folgepunkte das Zentrum umkreisen, während der Abstand zu ihm zunimmt. Die Anzahl der Arme entspricht daher der Periode. Die Punktanhäufungen an den Enden den Spiralarme in der obigen Abbildung sind die Folge der beiden zugehörigen Beinahe-Einfänge durch repulsive Zyklen.
[Bearbeiten] Dichteverteilung der Folgenglieder
Das nebenstehende Bild zeigt in der komplexen Ebene die Dichteverteilung der Folgenglieder, die man erhält, wenn man alle Folgen für c-Werte auf einem engen flächendeckenden Raster berücksichtigt. Im großen Kreis entspricht das der Dichteverteilung der Endpunkte der konvergenten Folgen zu c-Werten aus der Kardioide. Die beiden nächstkleineren Gebilde markieren die Bereiche zwischen denen die Grenzzyklen mit der Periode 2 für Folgen zu c-Werten aus dem "Kopf" hin und her springen. Die gitterförmigen Linien sind Artefakte als Folge eines Moiré-Effekts zwischen dem Raster der c-Werte und dem für die numerische Auswertung der Dichteverteilung.
[Bearbeiten] Bezug zur Chaostheorie
Das Bildungsgesetz, das der Folge zugrunde liegt, ist die einfachste nichtlineare Gleichung, anhand der sich der Übergang von Ordnung zu Chaos durch Variation eines Parameters provozieren lässt. Dazu genügt es, reelle Zahlenfolgen zu betrachten.
Man erhält sie, wenn man sich auf die c-Werte der x-Achse von beschränkt. Für Werte –0,75<=c<=0,25, das heißt innerhalb der Kardioide, konvergiert die Folge. Auf der "Antenne", die bis c=-2 reicht, verhält sich die Folge chaotisch. Der Übergang zu chaotischem Verhalten erfolgt nun über ein Zwischenstadium mit periodischen Grenzzyklen. Dabei nimmt die Periode zum chaotischen Bereich hin stufenweise um den Faktor zwei zu, ein Phänomen, das als Periodenverdopplung und Bifurkation bezeichnet wird. Jeder c-Bereich zu einer bestimmten Periode entspricht dabei einer der kreisförmigen "Knospen" auf der x-Achse.
Die Periodenverdopplung beginnt mit dem "Kopf" und setzt sich in der Folge der "Knospen" zur "Antenne" hin fort. Das Verhältnis der Längen aufeinander folgender Parameterintervalle und damit das der Knospendurchmesser zu unterschiedlicher Periode strebt dabei gegen die Feigenbaum-Konstante δ ≈ 4,669, eine fundamentale Konstante der Chaostheorie. Dieses Verhalten ist typisch für den Übergang realer Systeme zu chaotischer Dynamik. Die auffälligen Lücken im chaotischen Bereich entsprechen Inseln mit periodischem Verhalten, denen in der komplexen Ebene die Satelliten auf der "Antenne" zugeordnet sind.
Für gewisse komplexe c-Werte stellen sich Grenzzyklen ein, die auf einer geschlossenen Kurve liegen, deren Punkte jedoch nicht periodisch sondern chaotisch abgedeckt werden. Eine solche Kurve ist in der Chaostheorie als sogenannter seltsamer Attraktor bekannt.
Die Mandelbrot-Menge ist daher ein elementares Objekt für die Chaostheorie, an der sich fundamentale Phänomene studieren lassen. Sie wird aus diesem Grund hinsichtlich ihrer Bedeutung für die Chaostheorie gelegentlich mit der von Geraden für die euklidische Geometrie verglichen.
[Bearbeiten] Grafische Darstellung
Die grafische Darstellung der Mandelbrot-Menge und ihrer Strukturen im Randbereich ist nur mittels Computer möglich. Dabei entspricht jedem Bildpunkt ein Wert c der komplexen Ebene. Der Computer ermittelt für jeden Bildpunkt, ob die zugehörige Folge divergiert oder nicht. Sobald der Betrag |zn| eines Folgengliedes den Wert R=2 überschreitet, divergiert die Folge. Die Zahl der Iterationsschritte N gemäß obiger Rekursionsformel, nach denen das erfolgt, kann als Maß für den Divergenzgrad herangezogen werden. Über eine zuvor festgelegte Farbtabelle, die jedem Wert N eine Farbe zuordnet, wird in diesem Fall dem Bildpunkt eine Farbe zugewiesen. Um in ästhetischer Hinsicht harmonische Grenzen zwischen aufeinanderfolgenden Farben zu erreichen, wird in der Praxis für die Grenze R nicht der kleinste mögliche Wert R=2, sondern ein Wert R>>1 gewählt, da andernfalls die Farbstreifenbreite oszilliert. Für R>>1 bilden die Farbgrenzen darüber hinaus Äquipotenzialflächen, die man erhalten würde, wenn man die Mandelbrot-Menge als elektrisch geladenen Leiter interpretieren würde. Für kontinuierliche Farbverläufe, wie beispielsweise in der obigen Zoom-Bilderserie, ist eine Auswertung des Faktors erforderlich, um den R bei der ersten Überschreitung übertroffen wurde.
Da die Zahl der Iterationsschritte N, bevor die Grenze R überschritten wird, beliebig groß sein kann, muss für die praktische Durchführung der Rechnung ein Abbruchkriterium in Form einer maximalen Zahl von Iterationsschritten festgelegt werden. Werte von c, deren Folgen danach die Grenze R noch nicht überschritten haben, werden zu gerechnet. Je geringer der Abstand von c zu ist, umso größer ist die Zahl N, nach der R überschritten wird. Je stärker die Vergrößerung ist, mit der man den Rand von darstellen möchte, umso größer muss in diesem Fall die maximalen Zahl von Iterationsschritten gewählt werden, und umso größer fällt auch die Rechenzeit aus. Konvergiert die Folge für einen Startwert c, so kann die Berechnung der Folge auch schon früher abgebrochen werden.
Grafisch besonders reizvoll ist die Darstellung des Randes von mit seinem Formenreichtum. Je stärker die gewählte Vergrößerung ist, umso komplexere Strukturen lassen sich dort finden. Mit entsprechenden Computerprogrammen lässt sich dieser Rand wie mit einem Mikroskop mit beliebiger Vergrößerung darstellen. Die beiden einzigen künstlerischen Freiheiten, die dabei bestehen, sind die Wahl des Bildausschnittes sowie die Zuordnung von Farben zum Divergenzgrad.
Zur Untersuchung interessanter Strukturen sind oft Vergrößerungen erforderlich, die mit der üblichen Rechengenauigkeit gängiger Programmiersprachen aufgrund von Rundungsfehlern nicht darstellbar sind. Manche Programme enthalten daher spezielle Arithmetik-Routinen für 100 Nachkommastellen oder auch deutlich mehr. Die damit erzielbaren Vergrößerungsfaktoren von etwa 10100 bzw. mehr übersteigen selbst das Verhältnis vom Durchmesser des bekannten Kosmos zu dem eines Protons von nur etwa 1040 um einen astronomischen Faktor.
[Bearbeiten] Programmbeispiel
[Bearbeiten] Iteration über alle Bildpunkte
Das folgende Programmbeispiel geht davon aus, dass die Pixel des Ausgabemediums durch Koordinaten pix_x und pix_y mit einem Wertebereich von 1 bis jeweils max_x und max_y adressierbar sind. Die Berechnung des dem Pixel zugeordneten komplexen Zahlenwerts c mit dem Realteil cx und dem Imaginärteil cy erfolgt mittels geometrischer Überlegungen.
Die maximale Anzahl von Iterationsschritten ist max_iterationen. Wird dieser Wert überschritten, so wird das entsprechende Pixel der Menge zugeordnet. Der Wert von max_iterationen sollte mindestens 100 betragen. Bei stärkerer Vergrößerung sind zur korrekten Darstellung der Strukturen unter Umständen erheblich größere Werte erforderlich und damit auch deutlich größere Rechenzeiten.
FOR pix_x = 1 TO max_x FOR pix_y = 1 TO max_y cx = min_cx + pix_x * punkt_abstand_x cy = min_cy + pix_y * punkt_abstand_y iterations_wert = punkt_iteration ( cx, cy, max_betrags_quadrat, max_iterationen ) farb_wert = waehle_farbe ( iterations_wert, max_iterationen ) plot pix_x pix_y farb_wert NEXT pix_y NEXT pix_x
[Bearbeiten] Iteration eines Bildpunktes
Die Iteration von n nach n+1 für einen Punkt c der komplexen Zahlenebene erfolgt mittels der komplexen Gleichung
- ,
die sich mittels der Zerlegung der komplexen Zahl z in ihren Realteil x und Imaginärteil y in zwei reelle Gleichungen
und
umwandeln lässt.
Falls das Quadrat des Betrags der (n+1)-sten Zahl, gegeben durch
den Wert max_betrag_quadrat (mindestens 2*2=4) überschreitet, wird die Iteration abgebrochen, und die Anzahl der bislang erfolgten Iterationssschritte für die Zuordnung eines Farbwertes verwendet. Falls das Quadrat des Betrags nach einer gegebenen maximalen Anzahl von Iterationsschritten den max_betrag_quadrat nicht überschritten hat, wird angenommen, dass die Iteration beschränkt bleibt, und die Iterationsschleife abgebrochen.
Die folgende Funktion führt die beschriebene Iteration durch. x und xt sowie y und yt sind die iterativ benutzten Variablen für die Iterationswerte.
FUNCTION punkt_iteration (cx, cy, max_betrag_quadrat, max_iter) betrag_quadrat = 0 iter = 0 x = 0 y = 0 WHILE ( betrag_quadrat <= max_betrag_quadrat ) AND ( iter < max_iter ) xt = x * x - y * y + cx yt = 2 * x * y + cy x = xt y = yt iter = iter + 1 betrag_quadrat = x * x + y * y WEND punkt_iteration = iter END FUNCTION
Wird ein kontinuierlicherer Farbverlauf gewünscht, so bietet sich alternativ die Formel
punkt_iteration = iter – log(log(betrag_quadrat) / log(4)) / log(2)
an, die keine ganze sondern eine gebrochene Zahl liefert. Für die Folge mit c=0 und dem Startwert z0=2 liefert diese Formel den Wert Null. Es ergibt sich ferner eine von max_betrag_quadrat unabhängige Farbgebung, sofern dieser Wert groß gegen 1 ist.
Ein erheblicher Teil der Rechenzeit wird dort benötigt, wo die Zahlenfolge nicht divergiert. Moderne Programme bemühen sich, mit verschiedenen Verfahren die Rechenzeit für diese Stellen zu reduzieren. Eine Möglichkeit besteht darin, die Rechnung bereits abzubrechen, wenn die Zahlenfolge konvergiert ist oder sich in einem periodischen Zyklus gefangen hat. Andere Programme nutzen aus, dass jeder Punkt im Inneren einer geschlossenen Kurve, die nur Punkte aus enthält, ebenfalls dazugehört.
[Bearbeiten] Rezeption in der Öffentlichkeit
Die Mandelbrot-Menge erlangte durch Publikationen von Bildern in den Medien Ende der 80er Jahre des letzten Jahrhunderts einen für ein mathematisches Thema dieser Art ungewöhnlich großen Bekanntheitsgrad. Ein Aspekt neben dem enormen geometrischen Formenreichtum ist der extreme Kontrast zwischen diesem und der Einfachheit des zugrunde liegenden Algorithmus, der an biologische Systeme erinnert, bei denen nach naturwissenschaftlicher Sicht ebenfalls aus einer vergleichsweise geringen Zahl von Regeln äußerst komplexe Systeme entstehen können. Ein weiterer Aspekt ist die Nähe zur Chaostheorie, die ebenfalls in der Öffentlichkeit großes Interesse geweckt hatte. Die Mandelbrot-Menge hat auch Computerkünstler inspiriert und zu einem Aufschwung fraktaler Konzepte beigetragen. Dabei fanden und finden auch zahlreiche Modifikationen des Algorithmus Anwendung, der der Mandelbrot-Menge zugrunde liegt.
[Bearbeiten] Literatur
- Benoit Mandelbrot: "Die fraktale Geometrie der Natur" ISBN 3-764-32646-8
- John Briggs und F. David Peat: Die Entdeckung des Chaos. ISBN 3-446-15966-5
- Heinz-Otto Peitgen und Peter H. Richter: The Beauty of Fractals. ISBN 0-387-15851-0
- Heinz-Otto Peitgen und Dietmar Saupe: The Science of Fractal Images. ISBN 0-387-96608-0
- Karl Günter Kröber: Das Märchen vom Apfelmännchen – 1. Wege in die Unendlichkeit. ISBN 3-499-60881-2
- Karl Günter Kröber: Das Märchen vom Apfelmännchen – 2. Reise durch das malumitische Universum. ISBN 3-499-60882-0
Siehe auch: Fraktale Geometrie
[Bearbeiten] Weblinks
Commons: Mandelbrot-Menge – Bilder, Videos und/oder Audiodateien |
- The Encyclopedia of the Mandelbrot Set (englisch)
- Fractal Generator (Java-Plugin erforderlich)
- Apfelmännchen als Web-Client/Server Lösung
- Mandelbrot Fractal Explorer Erforschung der Mandelbrot-Menge mit MapClient (OpenLayers)
- Facharbeit über Juliamengen und Mandelbrot-Menge
- Julia- und Mandelbrot-Mengen
- Insbes. Guided Tours und interaktiver Mandelbrot-Explorer
- Schwarz-Weiß-Atlas, etwa 20fach
- XaoS Fraktal-Generator – unter GPL für viele Betriebssysteme
- Fractint – das freie Generator-Programm
- Fractal-Explorer – mächtiger Generator für Bilder und Animationen
- Sammlung von Julia- und Mandelbrotfraktalen
- Animationen zur Zoomfahrt im hiesigen Artikel – bis zu 1024x768 Pixeln
Dieser Artikel wurde in die Liste der Lesenswerten Artikel aufgenommen. |