New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Median - Wikipedia

Median

aus Wikipedia, der freien Enzyklopädie

Median (oder Zentralwert) bezeichnet eine Grenze zwischen zwei Hälften. In der Statistik halbiert der Median eine Stichprobe. Gegenüber dem arithmetischen Mittel, auch Durchschnitt genannt, hat der Median den Vorteil, robuster gegenüber Ausreißern (extrem abweichenden Werten) zu sein und sich auch auf ordinal skalierte Variablen anwenden zu lassen.

Ferner wird in der Geometrie die Seitenhalbierende eines Dreiecks als Median bezeichnet, weil sie das Dreieck in zwei flächengleiche Hälften teilt. Der Begriff median als anatomische Lagebezeichnung bedeutet in der Mitte liegend.

Inhaltsverzeichnis

[Bearbeiten] Median einer Stichprobe

Bei einer Stichprobe ist der Median definiert als jener Beobachtungswert, bei dem die Werte jeweils mindestens der Hälfte der Beobachtungen kleiner oder gleich und die Werte mindestens der Hälfte größer oder gleich diesem Wert sind.

Sortiert man die Beobachtungswerte der Größe nach („geordnete Stichprobe“), so ist der Median bei einer ungeraden Anzahl von Beobachtungen der in der Mitte dieser Folge liegende Beobachtungswert. Bei einer geraden Anzahl von Beobachtungen gibt es kein einziges mittleres Element, sondern zwei. Hier sind die beiden in der Mitte liegenden sowie alle denkbaren (auch nicht beobachteten) Werte dazwischen ein Median der Stichprobe, da für alle diese Werte obige Bedingung zutrifft.

Bei kardinal skalierten Messgrößen verwendet man im Falle einer geraden Anzahl Beobachtungen meist das arithmetische Mittel der beiden mittleren Beobachtungswerte:
Der Median \tilde x einer geordneten Stichprobe (x_1, x_2, \dots, x_n) von n Messwerten berechnet sich als

\tilde x =\begin{cases} x_{(n+1)/2} & n \; \mathrm{ ungerade} \\ \frac{1}{2} \left( x_{(n/2)} + x_{(n/2\,+\,1)} \right) & n \;\mathrm{ gerade} \end{cases}.

Oft möchte man dagegen sicherstellen, dass der Median in jedem Fall eines der Elemente der Stichprobe sein soll. In diesem Fall wird alternativ zu dieser Definition bei einer geraden Anzahl von Elementen entweder der Untermedian \tilde x_u = x_{n/2} oder der Obermedian \tilde x_o = x_{n/2\,+\,1} genutzt und als Median bezeichnet.
Diese Medianbestimmung spielt beispielsweise bei Datenbanksystemen eine große Rolle, wie z. B. bei SELECT-Abfragen mittels des Medians der Mediane.

[Bearbeiten] Eigenschaften

Der Median ist der Wert, bei dem die Summe der absoluten Abweichungen von ihm minimal sind. ∑ |x_ - x.i| = min Allerdings gleichen sich die positiven und negativen Abweichungen vom Median nicht aus (es sei denn er fällt mit dem Durchschnitt zusammen).

[Bearbeiten] Beispiele

  • Messwerte 1, 2, 4, 5, 18: Ungerade Anzahl. Der Median ist der Wert an der mittleren Stelle, also 4. Das arithmetische Mittel dagegen ist 6.
  • Messwerte 1, 1, 2, 3, 4, 37: Gerade Anzahl. Der Median ist die Hälfte der Summe der beiden mittleren Zahlen, also ½ (2 + 3), also 2,5. Das arithmetische Mittel dagegen ist 8.

[Bearbeiten] Median einer Verteilung

Dichtefunktion einer Dreiecksverteilung mit Median
Dichtefunktion einer Dreiecksverteilung mit Median

Eine Verallgemeinerung des Begriffes liefert die stochastische Betrachtung einer Zufallsvariable X bzw. deren Verteilungsfunktion F. Dort ist der Median das 0,5-Quantil, also

\frac 12 \inf\{x\in\R:F(x) > \frac 12\} + \frac 12 \sup\{x\in\R:F(x) < \frac 12\}.

Übertragen auf die oben genannte Stichprobe wäre nach dieser Definition der Median vergleichbar mit dem dort erwähnten Obermedian.
Er ist, neben beispielsweise Erwartungswert, Modus, ein Lageparameter.

Beispiel

Bei der Dreiecksverteilung

f(x) = \frac {x} {18},\quad 0 \le x \le 6,

ist der Median 4,24. Denn dies ist der x-Wert, der die Fläche unter der Dichtefunktion in zwei gleich große Flächen teilt: P(X \le 4{,}24) = 0{,}5.

[Bearbeiten] Median von gruppierten Daten

Vor allem in den Sozialwissenschaften wird bei Statistiken häufig der Median geschätzt, da nicht alle Daten explizit und exakt gegeben sind, sondern jene nur in Intervallen gruppiert vorliegen. So wird beispielsweise bei Umfragen selten nach dem exakten Gehalt gefragt, sondern nur nach der Einkommensklasse, also dem Bereich, in welchem das Gehalt liegt. Die Berechnungsvorschrift für diese Schätzung unterscheidet sich deswegen von der oben vorgestellten exakten Berechnung des Medians.
Es seien n die Anzahl aller Daten, ni die jeweilige Anzahl der Daten der i-ten Gruppe und ui bzw. oi die entsprechenden oberen bzw. unteren Intervallgrenzen.
Zunächst wird nun die mediane Klasse (oder mediane Gruppe) bestimmt, d. h. diejenige Gruppe, in welche der Median (nach obiger, konventioneller Definition) hineinfällt, z. B. die m-te Gruppe. Wenn keine weiteren Angaben über die Verteilung der Daten gegeben sind, wird z. B. Gleichverteilung postuliert, sodass man sich der linearen Interpolation als Hilfsmittel bedienen kann, um eine Schätzung des Medians der gruppierten Daten zu erhalten:

x_{med} = u_m+\frac{\frac n2 - \sum\limits_{k=1}^{m-1}n_k}{n_m} \cdot (o_m-u_m).

Im Gegensatz zur konventionellen Definition des Medians muss dieser nicht zwangsläufig ein Element aus der tatsächlichen Datenmenge sein, welche in aller Regel nicht bekannt ist.

Beispiel: Einkommen

Klasse (i) Bereich (ui bis oi) Gruppengröße (ni)
1 mind. 0, weniger als 1500 160
2 mind. 1500, weniger als 2500 320
3 mind. 2500, weniger als 3500 212

\frac n2 = \frac{212+320+160}2 = \frac{692}2=346, also liegt der Median in der 2. Klasse (d. h. m = 2), da die erste Klasse nur 160 Elemente umfasst.
Somit ergibt sich als Schätzung für den Median x_{med} = 1500+\frac{346-160}{320}\cdot1000 = 2081{,}25.

Eine Veranschaulichung dieses Verfahrens zur Festlegung des Medians bei gruppierten Daten ist die grafische Ermittlung mit Hilfe der Summenkurve. Hier wird der Abzissenwert x_{med}\, gesucht, der zum Ordinatenwert \frac{n}{2} gehört. Bei kleinerem und geradem n kann auch stattdessen der Ordinatenwert \frac{n}{2}+1 gewählt werden.

[Bearbeiten] Vorteile des Medians

Durch seine Resistenz gegen Ausreißer eignet sich der Median besonders gut als Lageparameter für nicht normalverteilte Grundgesamtheiten.

Beispiel:

Die Einkommen einer Gruppe von 10 Personen verteilen sich wie folgt:

  • 9 Personen verdienen EUR 1.000 und
  • 1 Person verdient EUR 1.000.000.

Das Durchschnittseinkommen beträgt EUR 100.900, der Median jedoch nur EUR 1.000.

[Bearbeiten] Siehe auch

wikt:
Wiktionary
Wiktionary: median – Bedeutungserklärungen, Wortherkunft, Synonyme und Übersetzungen

[Bearbeiten] Weblinks

Ausführliche Erläuterungen zur Berechung des Medians auf dem "Fußweg": Wikibooks und Statscan

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu