New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Ecuaciones de Euler-Lagrange - Wikipedia, la enciclopedia libre

Ecuaciones de Euler-Lagrange

De Wikipedia, la enciclopedia libre

Las ecuaciones de Euler-Lagrange son las condiciones bajo las cuales cierto tipo de problema variacional alcanza un extremo. Aparecen sobre todo en el contexto de la mecánica clásica en relación con el principio de mínima acción aunque también aparecen en teoría clásica de campos (electromagnetismo, Teoría general de la relatividad).

Tabla de contenidos

[editar] Ecuaciones de Euler-Lagrange en física

Artículo principal: acción (física)

[editar] Caso unidimensional

En mecánica clásica, estas ecuaciones establecen que la integral de acción para un sistema físico es un mínimo, es decir si:

S = \int_{t_1}^{t_2}\; L(x,\dot{x}(t))dt

la variación es

\delta S = \int_{t_1}^{t_2}\;       \left(        \epsilon{\partial L\over \partial x}      - \epsilon{d\over dt }{\partial L\over\partial \dot x}        \right)dt

y pedir

δS = 0 para variaciones "cercanas"

será si y solamente si

{\partial L\over\partial x^a} - {d\over dt }{\partial L\over\partial      \dot{x}^a} = 0

donde L es el lagrangiano para el sistema, y xa son las coordenadas generalizadas del sistema. Vea acción (física) para una introducción a este tema.

[editar] Caso multidimensional

La formalización de ciertos problemas físicos requiere construir una integral de acción sobre más de una variable. Así en teoría de campos y mecánica de medios continuos la acción física puede expresarse como una integral sobre un volumen:

S = \int_{\Omega \subset \R^n} \; \mathcal{L}(\psi^\mu,\partial_\mu \psi) \ d^nx


Donde dnx es el elemento de volumen que usualmente viene dado por una n-forma y \psi, \partial_\mu \psi representan las variables del campo y sus derivadas respecto a las coordenadas espaciales (o espacio-temporales). Cuando la acción toma esa forma las ecuaciones de Euler-Lagrange para el campo que minimiza la anterior integral, usando el convenio de sumación de Einstein, vienen dadas por:

{\partial \mathcal{L}\over\partial \psi} - {d\over dx^\mu }{\partial \mathcal{L}\over\partial      (\partial_\mu\psi)} = 0


[editar] Ecuaciones de Euler-Lagrange en geometría

Las ecuaciones de Euler-Lagrange pueden ser usadas para encontrar fácilmente la ecuación de las curvas geodésicas en una variedad de Riemann o "espacio curvo". Para ello consideremos un conjunto de coordenadas (x1, ...xn) sobre una región abierta U de la variedad de Riemann VR donde el tensor métrico viene dado por la expresión:

g = \sum_{i,j=1}^n g_{ij} \ dx^i \otimes dx^j \,

Puesto que dados dos puntos cualquiera de VR las geodésicas son las líneas de mínima longitud entre ellos podemos plantear el siguiente problema variacional, para el cuadrado de la longitud de una curva:

s = \int_{a}^{b} \sqrt {\sum_{i,j=1}^n g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}}  \quad dt \,


La minimización de la expresión anterior al ser la raíz una función monótona, es equivalente a la minimización de una integral de acción donde el lagrangiano sea:

L(x^i,\dot{x}^i) = \frac{1}{2} \sum_{i,j=1}^n g_{ij} \dot{x}^i \dot{x}^j \,

De ahí que la ecuación diferencial de las geodésicas venga dada por:

{\partial L\over\partial x^k} - {d\over dt }{\partial L\over\partial \dot{x}^k} =        {\sum_{i,j=1}^n \left( \frac{1}{2} \frac{\partial g_{ij}}{\partial x^k} \dot{x}^i \dot{x}^j      \right )} -      {d\over dt} \sum_{j=1}^n \left ( g_{kj} \dot{x}^j \right )= 0

La ecuación anterior de hecho puede, usando la simetría del tensor métrico, escribirse como:

\sum_{i,j=1}^n \left (      \frac{1}{2} \frac{\partial g_{ij}}{\partial x^k} \dot{x}^i \dot{x}^j     -\frac{\partial g_{kj}}{\partial x^i} \dot{x}^i \dot{x}^j \right ) \sum_{j=1}^n  -g_{kj} \ddot{x}^k = 0


Que en términos de los símbolos de Christoffel (de primera o segunda especie) sencillamente como:

\sum_{j=1}^n g_{kj} \ddot{x}^j + \sum_{i,j=1}^n  \Gamma_{k,ij} \dot{x}^i \dot{x}^j = 0  \qquad \qquad  \ddot{x}^j +  \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}^i \dot{x}^j = 0


Donde se han definido los símbolos de Christoffel como a partir de las derivadas del tensor métrico y el tensor inverso del tensor métrico:

\Gamma_{k,ij} := \left  (\frac{\partial g_{kj}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} -\frac{\partial g_{ij}}{\partial x^k} \right )  \qquad  \qquad \Gamma_{ij}^k :=\frac{1}{2} \sum_{p=1}^n g^{kp}\Gamma_{p,ij}
g^{ik}g_{kj} = g_{jk}g^{ki} = \delta_j^i


Conceptos fundamentales de la Física

Magnitud física · Energía · Energía cinética · Momentum · Momentum angular · Masa · Carga eléctrica

Materia · partícula · campo · onda · espacio-tiempo · observador · Espacio · Tiempo · Posición · Velocidad
Física teórica · Lagrangiano · Acción · Ecuaciones de Euler-Lagrange · Ecuación de movimiento · Estado · Ley de conservación · Entropía

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu