Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Mecánica clásica - Wikipedia, la enciclopedia libre

Mecánica clásica

De Wikipedia, la enciclopedia libre

La mecánica clásica es una teoría general del movimiento de sistemas de partículas físicas de sistemas macroscópicos y a velocidades pequeñas comparadas con la velocidad de la luz. Existen tres formulaciones diferentes de la mecánica clásica:

Si consideramos sistemas inerciales en el espacio euclídeo tridimensional ℝ³, las tres formulaciones son básicamente equivalentes.

Tabla de contenidos

[editar] Supuestos básicos

Los presupuestos básicos de la mecánica clásica son:

  1. el principio de mínima acción.
  2. la existencia de un tiempo absoluto, cuya medida es igual para cualquier observador con independencia de su grado de movimiento.
  3. el estado de una partícula queda completamente determinado si se conoce su cantidad de movimiento y posición siendo estas simultáneamente medibles.

Es interesante notar que en mecánica relativista de la teoría de la relatividad el supuesto (2) es inaceptable aunque sí son aceptables los supuestos (1) y (3). Por otro lado, en mecánica cuántica el que no es aceptable es el supuesto (3) (de hecho en la mecánica cuántica relativista ni el supuesto (2) ni el (3) son aceptables).

Aunque la mecáncia clásica y en particular la mecánica newtoniana es adecuada para describir experiencia diaria (con eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y a escala macroscópica), debido a la aceptación de tres supuestos tan restrictivos como (1), (2) y (3) no puede describir adecuadamente fenómenos electromagnéticos con partículas en rápido movimiento, ni los fenómenos físicos microscópicos que suceden a escala atómica. Sin embargo, esto no es un demérito de la teoría ya que la simplicidad de la misma se combina con la adecuación descriptiva para sistemas como cotidianos (cohetes, movimiento de planetas, moléculas orgánicas, trompos, trenes y trayectorias de móviles macroscópicos en general). En estos sistemas cotidianos es muy complicado siquiera describir su movimientos en términos de la teorías más generales.

[editar] Mecánica Lagrangiana

Artículo principal: Mecánica lagrangiana

La mecánica lagrangiana tiene la ventaja de ser suficientemente general como para que las ecuaciones de movimiento sean invariantes respecto a cualquier cambio de coordenadas. Eso permite trabajar con sistema de referencia inerciales o no-inerciales en pie de igualdad.

Para un sistema de 2n grados de libertad, la mecánica lagrangiana proporciona un sistema de n ecuaciones diferenciales ordinarias llamadas ecuaciones del movimiento que permiten conocer como evolucionará el sistema. Aunque en general la integración de ese sistema de ecuaciones no es sencilla resulta de gran ayuda reducir el número de coordenadas del problema buscando magnitudes conservadas, es decir, magnitudes físicas asociadas al sistema que no varían a lo largo del tiempo. Las magnitudes conservadas también se suelen llamar integrales del movimiento y suelen estar asociadas a leyes de conservación comunes.

En mecánica lagrangiana existe un modo muy elegante de buscar integrales de movimiento a partir del teorema de Noether. De acuerdo con este teorema cuando un lagrangiano es invariante bajo un grupo de simetría uniparamétrico entonces cualquier generador del álgebra de Lie de asociada a ese grupo uniparmétrico es proporcional a una magnitud conservada:

  • Así cuando un problema físico tiene algún tipo de simetría rotacional, su lagrangiano es invariante bajo algún grupo de rotación y tenemos que se conserva el momento angular.
  • Cuando un problema físico presenta simetría traslacional, es decir, cuando fuerzas que actúan sobre un sistema de partículas son idénticas en cualquier posición a lo largo de una línea, tenemos que en esa dirección se conserva el momento lineal.
  • La ley de conservación de la energía está asociada a una simetría de traslación el tiempo. Cuando las ecuaciones básicas de un sistema son iguales en todos los instantes del tiempo y los parámetros que determinan el problema no dependen del tiempo, entonces la energía de dicho sistema se conserva.

La mecánica lagrangiana puede generalizarse de forma muy abstracta e incluso ser usada en problemas fuera de la física (como en el problema de determinar las geodésicas de una variedad de Riemann). En esa forma abstracta la mecánica lagrangina se construye como un sistema dinámico sobre el fibrado tangente de cierto espacio de configuración aplicándose diversos teoremas y temas de la geometría diferencial.

[editar] Mecánica Hamiltoniana

Artículo principal: Mecánica hamiltoniana

La mecánica hamiltoniana es similar en esencia a la mecánica lagrangiana, aunque describe la evolución temporal de un sistema mediante ecuaciones diferenciales de primer orden, lo cual permite integrar más fácilmente las ecuaciones de movimiento. En su forma canónica las ecuaciones del movimiento de Hamilton tienen la forma:

{\partial H \over \partial q_j} = - \dot{p_j} \qquad {\partial H \over \partial p_j} = \dot{q_j}


Donde H es la función de Hamilton o hamiltoniano, y (q_i, p_i)_{i=1...n} \, son los pares de coordenadas canónicas conjugadas del problema. Usualmente las variables tipo qi se interpretan como coordenadas generalizadas de posición y las pi como momentos asociados a las velocidades.

Sin embargo, una característica notable de la mecánica hamiltoniana es que trata en pie de igualdad los grados de libertad asociados a la posición y a la velocidad de una partícula. De hecho en mecánica hamiltoniana no podemos distinguir formalmente entre coordenadas generalizadas de posición y coordenadas generaliadas de momento. De hecho se puede hacer un cambio de coordenadas en que las posiciones queden convertidas en momentos y los momentos en posiciones. Como resultas de la descripción igualitaria entre momentos y posiciones la mecánica hamiltoniana admite transformaciones de coordenadas mucho más generales que la mecánica lagrangiana. Esa mayor libertad en escoger coordenadas generalizadas se traduce en una mayor capacidad para poder integrar las ecuaciones de movimiento y determinar propiedades de las trayectorias de partículas.

Una de las generalización de la mecánica hamiltoniana es la geometría simpléctica, en esa forma la mecánica hamiltoniana es usada para resolver problemas no físicos, incluso para la matemática básica. Algunas generalizaciones y regeneralizaciones de la mecánica hamiltoniana son:

  • La geometría simpléctica
  • La geometría de contacto que propiamente es una generalización de la anterior.
  • La mecánica de Nambu que es una especie de mecánica hamiltoniana con varios hamiltonianos simultáneos.

[editar] Mecánica relativista y mecánica cuántica

La mecánica relativista va más allá de la mecánica clásica y trata con objetos moviéndose a velocidades relativamente cercanas a la velocidad de la luz). La mecánica cuántica trata con sistemas de reducidas dimensiones (a escala semejante a la atómica), y la teoría cuántica de campos (ver tb. campo) trata con sistemas que exhiben ambas propiedades.


[editar] Véase también


Mecánica clásica

Mecánica newtoniana : Momentum · Momentum angular · Fuerza · Torque · Energía cinética · Energía potencial · Trabajo · Fuerza conservativa

Mecánica lagrangiana: Función lagrangiana · Espacio de configuración · Principio de mínima acción · Principio de d'Alembert · Acción · Ecuaciones de Euler-Lagrange
Mecánica Hamiltoniana: Función hamiltoniana · Espacio fásico · Ecuaciones canónicas de Hamilton · Variedad simpléctica
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu