Abélien
Un article de Wikipédia, l'encyclopédie libre.
-
Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.
L'adjectif abélien, dérivé du nom du mathématicien norvégien Niels Abel, est employé dans de nombreux domaines des mathématiques.
En théorie des groupes :
- Un groupe abélien est un groupe dont la loi est commutative ;
- Un groupe métabélien est un groupe dont le groupe des commutateurs est abélien :
- L'abélianisation est le plus grand quotient d'un groupe qui soit un groupe abélien.
En analyse :
- En analyse réelle, les théorèmes abéliens sont des résultats de sommations de séries divergentes généralisant un théorème d'Abel ;
- En analyse fonctionnelle, une algèbre de Von Neumann abélienne est une algèbre de Von Neumann d'opérateurs sur un espace de Hilbert dont les éléments commutent.
En théorie des nombres :
- Une extension abélienne est une extension de corps dont le groupe de Galois associé est abélien ;
- Une variété abélienne est le plongement d'un tore dans un espace projectif, et les fonctions méromorphes sur une telle variété portant le nom de fonctions abéliennes ;
- Une intégrale abélienne est une fonction reliée à une forme différentielle sur une surface de Riemann.
- Une catégorie préabélienne est une catégorie additive, avec existence de noyaux et conoyaux.
- Une catégorie abélienne est une catégorie additive avec existence des noyaux et conoyaux, dans laquelle objets et morphismes peuvent s'additionner.
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |