Fermé (topologie)
Un article de Wikipédia, l'encyclopédie libre.
![]() |
Cet article est une ébauche à compléter concernant la topologie, vous pouvez partager vos connaissances en le modifiant. |
En topologie, un fermé est un ensemble dont le complémentaire est un ouvert.
[modifier] Définition
Soit (E,T) un espace topologique, où E est un ensemble et T un ensemble de sous-ensembles de E.
Un sous-ensemble F de E est un fermé sur (E,T) si son complémentaire dans E (c'est à dire l'ensemble des éléments de E qui ne sont pas éléments de F) est un ouvert sur (E,T), c'est à dire un élément de T.
[modifier] Propriétés
- E et l'ensemble vide sont des fermés. Ceci permet de montrer qu'il peut exister des ensembles à la fois ouverts et fermés.
- Toute union d'un ensemble fini de fermés est un fermé.
- Toute intersection (finie ou infinie) de fermées est un fermé.
- La propriété d'intersection permet de définir l'adhérence d'un ensemble A dans un espace E, comme étant le plus petit fermé de E dont A est un sous-ensemble ; de façon plus spécifique, l'adhérence de A est l'intersection de tous les fermés contenant A.
- F est un fermé si et seulement si tout point d'accumulation de F est un élément de F.
- La frontière d'un fermé est incluse dans celui-ci.
[modifier] Voir aussi
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |