Gruppo semplice
Da Wikipedia, l'enciclopedia libera.
In matematica, un gruppo semplice è un gruppo non banale i cui unici sottogruppi normali sono il sottogruppo banale e il gruppo stesso.
In altre parole, i gruppi semplici sono gruppi che contengono il minimo numero di sottogruppi normali. I gruppi semplici sono importanti in teoria dei gruppi, specialmente nella teoria dei gruppi finiti, perché formano i "blocchi primari" per la costruzione di ogni gruppo finito.
[modifica] Esempi
- Un gruppo ciclico G=Z/mZ è semplice se e solo se m è primo: infatti tutti i sottogruppi di G sono normali, e corrispondono ai divisori di m.
- Il gruppo dei numeri interi Z non è semplice, perché i numeri pari formano un sottogruppo normale. Più in generale, un gruppo abeliano è semplice se e solo se è ciclico di ordine primo.
- Il più piccolo esempio di gruppo semplice nonabeliano è il gruppo alternante A5 di ordine 60.
- Il secondo esempio è il gruppo lineare speciale proiettivo PSL(2,7), di ordine 168.
[modifica] Classificazione
La classificazione dei gruppi semplici finiti fu conclusa nel 1982, grazie al contributo di numerosi matematici, tra cui John G. Thompson.