New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Propagazione degli errori - Wikipedia

Propagazione degli errori

Da Wikipedia, l'enciclopedia libera.

In statistica, la propagazione degli errori descrive la relazione tra l'errore associato ad una variabile casuale e l'errore associato ad una funzione di tale variabile. In genere, le variabili misurate in un esperimento hanno incertezze, dovute per esempio alla precisione degli strumenti, che si progagano sui risultati.

A una variabile x viene spesso associato un errore Δx (detto errore assoluto) che esprime il grado di incertezza nella conoscenza del valore di x ; si può scrivere che la variabile ha valore pari a x ± Δx, ovvero compreso nell'intervallo [x−Δx, xx]. Si chiama errore relativo il rapporto Δx/x, solitamente espresso in percentuali. In molti casi si assume che la differenza tra il valore misurato e quello reale sia distribuita normalmente (la deviazione standard della distribuzione è l'errore della misura). Nel seguito si danno alcune formule per casi particolari.

Indice

[modifica] Esempi

Funzione Errore associato alla funzione
X = A ± B X)² = (ΔA)² + (ΔB
X = cA X) = cA)
X = c(A×B) or X = c(A/B) X/X)² = (ΔA/A)² + (ΔB/B
X = c(A×B×C) or X = c(A/BC X/X)² = (ΔA/A)² + (ΔB/B)² + (ΔC/C
X = cAn X/X) = |n| (ΔA/A)
X = ln cA ΔX = (ΔA/A)
X = exp A X/X) = ΔA

[modifica] Formula generale

Sia f(x1,x2,...,xn) una funzione dipendente da n variabili del tipo x1,x2,...,xn; l'incertezza di ciascuna variabile è data da Δxj:

x_j \pm \Delta x_j\, .

Se le variabili non sono correlate, si può calcolare l'errore Δf di f partendo dalle incertezze delle singole variabili:

\Delta f = \Delta f \left(x_1, x_2, ..., x_n, \Delta x_1, \Delta x_2, ..., \Delta x_n \right) = \left( \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\Delta x_i \right)^2 \right)^{1/2} \, ,

dove \frac{\partial f}{\partial x_j} è la derivata parziale di f per la j-esima variabile.

Se le variabili sono invece correlate, si inserisce la covarianza tra coppie di variabili Ci,k := cov(xi,xk) come una doppia somma tra ogni coppia (i,k):

\Delta f = \left( \sum_{i=1}^n \sum_{k=1}^n \left(\frac{\partial f}{\partial x_i}\frac{\partial f}{\partial x_k}C_{i,k} \right) \right)^{1/2}\, ,

dove Ci,i = var(xi) = Δxi².

Dopo aver calcolato Δf, si può quindi affermare che il valore della funzione con la sua incertezza è pari a:

f \pm \Delta f \, .

Non è certo un risultato sorprendente: le incertezze sulle x influiscono sulla variabile y a seconda di come le variabili siano tra loro relazionate. Sviluppando mediante un polinomio di Taylor la funzione f(x) fino al primo ordine (nell'ipotesi che tutti i termini di ordine superiore al primo siano trascurabili), le derivate del primo ordine descrivono bene l'andamento stesso della funzione.

[modifica] Applicazioni

[modifica] Calcolo degli estremi

Una prima semplice applicazione consiste nell'inserire nei calcoli gli estremi dell'intervallo dell'errore; se la misura vale:

x ± Δx

allora il « valore reale » è compreso nell'intervallo [xx;xx].

Si calcola quindi:

y1 = ƒ(xx)
y2 = ƒ(xx)

e, secondo l'ordine di y1 e y2, si considera [y1;y2] o [y2;y1] come l'intervallo dell'errore.

Questo metodo può essere utilizzato solo se la funzione è monotòna nell'intervallo [xx;xx].

[modifica] Calcolo della derivata

Un metodo semplice utilizzato spesso nella Fisica prevede l'utilizzo del polinomio di Taylor arrestato al primo ordine, ovvero la sostituzione della funzione ƒ con la sua retta tangente per stimare l'errore. Si ha:

ƒ(x) = ƒ(a) + ƒ '(a)·(x-a) + o(x)

dove o(x) è una funzione tendente a zero. Se si sostituisce x con a + Δa, si ottiene:

ƒ(a + Δa) = ƒ(a) + ƒ '(a)·Δa + o(a + Δa)

Si può dunque ricavare che:

Δy ≈ ƒ '(a) · Δa

[modifica] Calcolo dei differenziali

Si può utilizzare la legge dei gas perfetti come esempio:

P \times V=n \times R \times T

dove

La pressione in funzione di n, R, T e V si esprime come:

P =\frac{n \times R \times T}{V}

e scrivendo i rispettivi differenziali si ha:

dP =\frac{n \times R}{V} dT + \frac{n  \times T}{V} dR + \frac{ R \times T}{V}dn - \frac{n \times R \times T}{V^2}dV

Se si sostituiscono i vari dx con i rispettivi errori, si ottiene:

\delta P =\frac{n \times R}{V}\delta T + \frac{n  \times T}{V}\delta R +\frac{ R \times T}{V}\delta n + \frac{n \times R \times T}{V^2}\delta V

che fornisce l'errore assoluto del valore di P conoscendo gli errori di T, R, n e V.

Altri esempi in questo senso sono:

  • il calcolo dell'area di un rettangolo:
S = Ll e S + dS = (L + dL)(l + dl) = Ll + Ldl + ldL + dldL
si può scrivere come:
dS = ((L + dL)(l + dl) − Ll) = Ldl + ldL + dLdl
approssimabile in:
dS = Ldl + ldL
  • il calcolo di un volume V = x · y · z:
V(x + dx,y + dy,z + dz) = (x + dx)(y + dy)(z + dz) = xyz + dxyz + xdyz + xydz + xdydz + ydxdz + zdxdy + dxdydz
diventa:
dV = yzdx + zxdy + xydz + dxdydz
approssimabile in dV = yzdx + zxdy + xydz
notando che:
dV = yz dx +zx dy +  xy dz = \frac{\partial (xyz) }{\partial x}dx+\frac{\partial (xyz) }{\partial y}dy+\frac{\partial (xyz) }{\partial z}dz
dove:\frac{\partial (xyz) }{\partial x}= yz ; \frac{\partial (xyz) }{\partial y}=xz ; \frac{\partial (xyz) }{\partial z}=xy
  • in generale il calcolo della variazione di una funzione ƒ(x,y,z).
d f(x,y,z)  = \frac{\partial  f(x,y,z) }{\partial x}dx+\frac{\partial f(x,y,z) }{\partial y}dy+\frac{\partial  f(x,y,z)}{\partial z}dz

[modifica] Calcolo della funzione tangente inversa

Si può calcolare la propagazione dell'errore per la funzione tangente inversa come esempio dell'uso delle derivate parziali. Si definisce quindi la funzione:

f(θ) = arctanθ,

mentre σθ è l'incertezza assoluta della misura di θ.

La derivata parziale di f(θ) rispetto a θ è:

\frac{\partial f}{\partial \theta} = \frac{1}{1+\theta^2}.

Quindi, la propagazione dell'errore σf è pari a:

\sigma_{f} = \frac{\sigma_{\theta}}{1+\theta^2},

[modifica] Calcolo della resistenza elettrica

Un' applicazione pratica si ritrova nella misurazione della corrente elettrica I e del voltaggio V di un resistore con l' obbiettivo di determinare la resistenza elettrica R utilizzando la legge di Ohm:

R = V / I.

Esprimendo le quantità misurate con le rispettive incertezze (I±ΔI e V±ΔV), l'incertezza ΔR del risultato è pari a:

\Delta R = \left( \left(\frac{\Delta V}{I}\right)^2+\left(\frac{V}{I^2}\Delta I\right)^2\right)^{1/2} = R\sqrt{\left(\frac{\Delta V}{V}\right)^2+\left(\frac{\Delta I}{I}\right)^2}.

Quindi, in questo semplice caso, l'errore relativo ΔR/R è pari alla radice quadrata della somma dei quadrati degli errori relativi delle due quantità misurate.

[modifica] Voci correlate

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu