New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Trasformazioni stella-triangolo - Wikipedia

Trasformazioni stella-triangolo

Da Wikipedia, l'enciclopedia libera.

Le trasformazioni stella-triangolo o triangolo-stella sono molto utilizzate nel campo dell'elettrotecnica per poter più agevolmente risolvere circuiti con bipoli passivi.

Distribuzione a stella e a triangolo
Distribuzione a stella e a triangolo


[modifica] Reti in regime stazionario

[modifica] Passaggio da stella a triangolo

Per dimostrare il passaggio da una configurazione a stella ad una a triangolo (più utile ad esempio nel calcolo delle resistenze in parallelo) si procede risolvendo il primo circuito con il metodo delle maglie ed il secondo con il metodo dei nodi considerando il nodo A a potenziale nullo per semplicità. Per fare ciò si fornisce un'alimentazione esterna che non altera le caratteristiche del sistema.

Per il primo circuito si ha:

\begin{bmatrix}  R_a + R_b & - R_a \\ - R_a & R_a + R_c \end{bmatrix}  \begin{bmatrix}  I_1 \\ I_2 \end{bmatrix}  =  \begin{bmatrix} -V_b \\ V_c \end{bmatrix}

per cui la prima corrente di maglia è

I_1 = - V_b \frac{R_a}{R_a R_b + R_a R_c + R_b R_c}  - V_b \frac{R_c}{R_a R_b + R_a R_c + R_b R_c} +  V_c \frac{R_a}{R_a R_b + R_a R_c + R_b R_c}.

Per il secondo circuito invece si ottiene

\begin{bmatrix}  G_{ab} + G_{bc} & - G_{bc} \\ - G_{bc} & G_{ac} + G_{bc} \end{bmatrix}  \begin{bmatrix}  V_b \\ V_c \end{bmatrix}  =  \begin{bmatrix} -I_1 \\ I_2 \end{bmatrix}

quindi l'equazione per la corrente I1 è

I_1 = - (G_{ab} + G_{bc}) V_b + G_{bc} V_c\,\!.

Eguagliando i coefficienti si ottiene la relazione per la conduttanza tra il nodo B e C:

G_{bc} = \frac{R_a}{R_a R_b + R_a R_c + R_b R_c}

e quindi analogamente si dimostra che

G_{ac} = \frac{R_b}{R_a R_b + R_a R_c + R_b R_c}

e

G_{ab} = \frac{R_c}{R_a R_b + R_a R_c + R_b R_c}

.

Si noti quindi che il valore della conduttanza di un lato del triangolo è pari al rapporto tra la resistenza che si oppone al lato in esame e il prodotto misto a due a due delle resistenze stella.

[modifica] Passaggio da triangolo a stella

In maniera perfettamente duale si ottengono le resistenze stella dalle conduttanze triangolo:

R_a = \frac{G_{bc}}{G_{ab} G_{ac} + G_{ab} G_{bc} + G_{ac} G_{bc} }

R_b = \frac{G_{ac}}{G_{ab} G_{ac} + G_{ab} G_{bc} + G_{ac} G_{bc} }

R_c = \frac{G_{ab}}{G_{ab} G_{ac} + G_{ab} G_{bc} + G_{ac} G_{bc} }


[modifica] Reti in regime sinusoidale

Le configurazioni secondo cui possiamo trovare i componenti resistitivi, capacitivi e induttivi sono le seguenti:

Configurazione stella, triangolo

Configurazione stella, triangolo

E' possibile passaggio dagli schemi a destra, configurazione a stella, a quelli a sinistra, configurazione a stella mediante le suenti formule.

[modifica] Passaggio da triangolo a stella

\dot{Z}_a = {\dot{Z}_{ab} \dot{Z}_{ca}\over \dot{Z}_{ab} + \dot{Z}_{bc} + \dot{Z}_{ac} }

\dot{Z}_b = {\dot{Z}_{ab} \dot{Z}_{bc}\over \dot{Z}_{ab} + \dot{Z}_{bc} + \dot{Z}_{ac} }

\dot{Z}_c = {\dot{Z}_{bc} \dot{Z}_{ca}\over \dot{Z}_{ab} + \dot{Z}_{bc} + \dot{Z}_{ac} }

[modifica] Passaggio da stella a triangolo

\dot{Z}_{ab} = {\dot{Z}_{a}\dot{Z}_{b} + \dot{Z}_{b}\dot{Z}_{c} + \dot{Z}_{c}\dot{Z}_{a} \over \dot{Z}_{c} }

\dot{Z}_{bc} = {\dot{Z}_{a}\dot{Z}_{b} + \dot{Z}_{b}\dot{Z}_{c} + \dot{Z}_{c}\dot{Z}_{a} \over \dot{Z}_{a} }

\dot{Z}_{ca} = {\dot{Z}_{a}\dot{Z}_{b} + \dot{Z}_{b}\dot{Z}_{c} + \dot{Z}_{c}\dot{Z}_{a} \over \dot{Z}_{b} }

[modifica] Voci correlate

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu