Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Teurema da la divergenza - Wikipedia

Teurema da la divergenza

From Wikipedia

Lumbaart ucidentaal Cheest artícul al è scrivüü in Koiné matemàtica, urtugrafía ünificada. Lombart oriental


In càlcül veturiaal, ul teurema da la divergenza, apó cugnussüü cuma teurema da Gauss, teurema da Ostrogradsky, u teurema da Ostrogradsky–Gauss al è un resültaa ch’al lazza la divergenza d'un caamp veturiaal a la valuur da le integrale da süperfiis dal flüss definii pal caamp. Ul teurema da la divergenza al è un resültaa impurtaant par la matemàtica e la física, in particülaar in eletrustàtica e dinàmica da flüit.

Cuntegnüü

[redatá] Definizziú matemàtica

Al síes V un sübcungjuunt cumpatt da Rn (pensaant íntal caas n=3) e diferenziàbil a tocch. Si F al è un caamp veturiaal diferenziàbil cuntínü definii int una bula intuurn da V, alura a gh’emm

\iiint\limits_V\left(\nabla\cdot\mathbf{F}\right)dV=\iint\limits_S\mathbf{F}\cdot d\mathbf{S}


indúe S = ∂V al è la vora da V urientada par vetuur nurmaal in fö, e dS al è NdS, la nurmala in fö da la vora ∂V.

Al cuventa remarcá che ul teurema da Gauss al vé gjo dal teurema da Stokes plüü generaal, che generaliza ul teurema fundamentaal dal càlcül.

[redatá] Esempi

Süpusaant che a vuremm evalüá \iint\limits_S\mathbf{F}\cdot \mathbf{n}dS, indúe S al è la sfera ünitaa definida par x2 + y2 + z2 = 1 e F al è ul caamp veturiaal \mathbf{F} = 2 x\mathbf{e}+y^2\mathbf{j}+z^2\mathbf{k}. Ul càlcül dirett da chesta integrala al è fisc difícil, però sa l pöö simplificá duvraant ul teurema da la divergenza:

\iint\limits_S\mathbf{F}\cdot \mathbf{n} dS=\iiint\limits_W\left(\nabla\cdot\mathbf{F}\right)dV=2\iiint\limits_W\left(1+y+z\right)dV
= 2\iiint\limits_W dV + 2\iiint\limits_W y dV + 2\iiint\limits_W z dV

Par simetría,

\iiint\limits_W y dV = \iiint\limits_W z dV = 0

Alura,

2\iiint\limits_W\left(1+y+z\right)dV = 2\iiint\limits_W dV = \frac{8\pi}{3}

par che la sfera ünitaa W la gh’a vulüm 4π/3.

[redatá] Aplicazziú

[redatá] Eletrustàtica

Aplicaa a un caamp eletrustàtich, al da la legg da Gauss: la divergenza al è una custanta par la densitaa da càrega dal vulümm.

[redatá] Gravitaa

Aplicaa a un caamp gravitazziunal, al s’uteegn che la integrala da süperfiis al è -4πG par la massa da deent, quala-sa-síes la distribüzziú da massa, e le masse esterne.

[redatá] Distribüzziú sférica simétrica da masse

Íntal caas da distribüzziú sférica simétrica da masses, sa l pöö cunclüüt che la forza dal caamp a una distanza r dal céntar a l’è interiuur cunt una magnitüda da G/r² par la massa tutala a una distanza petita, qual-sa-síes le masse a una distanza süperiuur. Par esempi, una sfera vöja la prudüiss mia da gravitaa a l'interiuur. Ul caamp gravitazziunal a l'interiuur al è l istess che si la sfera vöja ga la füdess mia.

[redatá] Distribüzziú cilíndrica simétrica da masse

Íntal caas da una distribüzziú cilíndrica infinida simétrica da masse, sa pöö cunclüüt che la forza dal caamp a una distanza dal céntar al è interiuur cunt una magnitüda da 2G/r par la massa tutala par ünitaa da lunghezza a una distanza cürta, qual-sa-síes le masse a una distanza süperiuur.

Par esempi, un cilindre vöj infinii al prudüiss mia da gravitaa a l'interiuur.

[redatá] Stòria

Ul teurema al è staa descoeert par Joseph Louis Lagrange ul 1762, e plüü taart redescueert independentameent par Carl Friedrich Gauss ul 1813, par George Green ul 1825 e ul 1831 par Mikail Vasilievich Ostrogradsky, che apó al dà la prima pröva dal teurema. Sübseguentameent, di variazziú dal teurema da la divergenza sa i nòmina teurema da Gauss, teurema da Green e teurema da Ostrogradsky.


Cheest artícul sa basa sül artícul GFDL da PlanetMath a http://planetmath.org/encycjopedia/Divergence.html t:Teurema da Divergênzia

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu