Fermat tæl
Fram Wikipedian
In rīmcræftum, Fermat tæl, genemnod æfter Pierre de Fermat, þǣm þe hīe ærest hogde, is positif tæl mid scape:
þider n is unnegatif tæl. Þā ærest eahta Fermat talu sind (æfterfylgung A000215 on OEIS):
- F0 = 21 + 1 = 3
- F1 = 22 + 1 = 5
- F2 = 24 + 1 = 17
- F3 = 28 + 1 = 257
- F4 = 216 + 1 = 65537
- F5 = 232 + 1 = 4294967297 = 641 × 6700417
- F6 = 264 + 1 = 18446744073709551617 = 274177 × 67280421310721
- F7 = 2128 + 1 = 340282366920938463463374607431768211457 = 59649589127497217 × 5704689200685129054721
Gif 2n + 1 frumtæl is, man cynþ ācȳðan þæt n must bēon 2-miht. (Gif n = ab þæt 1 < a, b < n and b is ofertæl, man hæfþ 2n + 1 ≡ (2a)b + 1 ≡ (−1)b + 1 ≡ 0 (mod 2a + 1).)
For þǣm ǣlc frumtæl mid scape 2n + 1 is Fermat tæl, and þās frumtalu hātte Fermat frumtalu. Man wāt ǣnlīce fīf Fermat frumtalu: F0, ... ,F4.
Innungbred |
[ādihtan] Basic properties
Þā Fermat talu āfylaþ þis recurrence relations
- Fn = (Fn - 1 - 1)2 + 1
for n ≥ 2.
[ādihtan] See swelce eac
- Mersenne frumtæl
- Lucas's theorem
- Proth's theorem
- Pseudoprime
- Primality test
- Constructible tæl
- Sierpinski tæl
[ādihtan] Ūtweardlican bendas:
- Sequence of Fermat numbers
- Prime Glossary Page on (+d,āc) Fermat Numbers
- Generalized Fermat Prime gesecan
- History of Fermat Numbers
- Unification of Mersenne ge Fermat Numbers
- Prime Factors of Fermat Numbers
[ādihtan] References
- 17 Wordcræftas on Fermat talu: From Number Theory to Geometry, Michal Krizek, Florian Luca, Lawrence Somer, Springer, CMS Books 9, ISBN 0387953329 (Þis bóc hæfþ extensive list of references.)