نظرية الشواش
من ويكيبيديا، الموسوعة الحرة
نظرية الشواش ( Chaos Theory ) من أحدث النظريات الرياضية الفيزيائية -وتترجم أحيانا بنظرية الفوضى أو العماء- التي تتعامل مع موضوع الجمل المتحركة (الديناميكية) اللاخطية التي تبدي نوعا من السلوك العشوائي يعرف بالشواش, وينتج هذا السلوك العشوائي إما عن طريق عدم القدرة على تحديد الشروط البدئية (تأثير الفراشة Butterfly Effect) أو عن طريق الطبيعة الفيزيائية الاحتمالية لميكانيك الكم.
تحاول نظرية الشواش أن تستشف النظام الخفي المضمر في هذه العشوائية الظاهرة محاولة وضع قواعد لدراسة مثل هذه النظم مثل الموائع والتنبؤات الجوية والنظام الشمسي واقتصاد السوق وحركة اللأسهم المالية والتزايد السكاني.
فهرس |
[تحرير] مقدمة عامة
أول من بحث في الشواش كان عالم الأرصاد، المدعو إدوارد لورينتز. ففي عام 1960 م، كان يعمل على مشكلة التنبؤِ بالطقس. على حاسوب مزود بنموذج لمحاكاة تحولات الطقس مؤلف من مجموعة مِنْ اثنتا عشرة معادلة لتشكيل الطقس. يقوم برنامجِ الحاسوبِ هذا بتوقع نظري للطقس.
في أحد أيام 1961 م، أراد رؤية سلسلة معينة من الحسابات مرة ثانية. ولتَوفير الوقتِ، بدأَ من منتصف السلسلة، بدلاً من بدايتها.
لاحظ لورينتز عند عودته، أن السلسلة قد تطورتَ بشكل مختلف. بدلاً من تكرار نفس النمط السابق, فقد حدث تباعد في النمطِ، يَنتهي بانحراف كبير عن المخطط الأصلي للسلسلة الأصلية.
وفي النهاية استطاع لورينتز تفسير الأمور, فقد قام الحاسوب بتخزين الأعداد بستة منازل عشرية في الذاكرة. لكنه كان يظهر ثلاثة أرقام عشرية فقط. عندما قام لورينتز بإدخال عدد من منتصف السلسلة أعطاه الرقم الظاهر ذو المنازل العشرية الثلاث و هذا أدى لإختلاف بسيط جدا عن الرقم الأصلي الموجود في الحسابات. ورغم أن هذا الخلاف بسيط جدا وضئيل فقد تطور مع تسلسل الحسابات إلى فروق ضخمة تجلت بانحرافات المخططات الواضحة.
كانت الأفكار التقليدية وقتها تعتبر مثل هذا التقريب إلى ثلاثة مراتب عشرية دقيقا جدا ولم يكن الفيزيائيون يلقون بالا إلى الفروقات التي يمكن أن تنتج بعد مدة من هذه الفروقات الضئيلة في الشروط البدئية للتجربة, لكن لورينتز غير هذه الفكرة.
جاءَ هذا التأثيرِ لكي يعرف بتأثيرِ الفراشة. فكمية الاختلاف الضئيلة في نقاط بداية المنحنيين كانت صغيرة جدا لدرجة تشبيهها بخفقان جناح فراشة في الهواء لكن آثارها كانت عظيمة لدرجة التنبؤ بإعصار يضرب منطقة من العالم.
من هذه الفكرة، صرّح لورينتز بأنّه من المستحيل توقع الطقس بدقّة. على أية حال، قادَ هذا الاكتشاف لورينتز إلى تشكيل النظرية التي عرفت لاحقا بنظرية الشواش.
بدأ لورينتز البحث عن نظام (مجموعة معادلات) أسهل من نظامه ذو الاثني عشر معادلة ليدرس حساسيته للشروط البدئية. اعتمد لورينتز نموذجا يصف جملة دولاب مائي مؤلفة من ثلاث معادلات.
حصل لورينتز من جديد على حساسية عالية للشروط البدئية في هذا النموذج, فالنموذج كان يقدم نموذجا شواشيا يتغير مخططه بتغير الشروط البدئية لكن المدهش في الموضوع أن شكل المخططات كان دائما متشابها بشكل لولب مزدوج. تقليديا، كانت توصف الحركات بأنها إما أن تؤدي إلى حالة مستقرة حيث تصل المتغيرات إلى قيم ثابتة لا تتغير أو حركات دورية تقوم بنفس الحركات على نفس المسارات بشكل مستمر, لكن في هذه الحالة حصل لورينتز على حركات ذات شكل متشابه لكنها غير متطابقة وبالتالي غير دورية, وهذا النمط من الحركة هو ما أسماه لورينتز فيما بعد بجاذب لورينتز.
[تحرير] مفاهيم أساسية
- الجملة الخطية أو النظام الخطي (linear system) تساوي مجموع أجزائها بينما الجملة اللاخطية يمكن أن تكون أكثر من مجموع أجزائها. هذا يقتضي ضرورة دراسة الجملة ككل وعدم الاكتفاء بدراسة أجزاء الجملة كلا على حدة.
- معظم الظواهر الطبيعية في الكون تتألف من جمل لاخطية في حين تشكل الجمل الخطية نزرا يسيرا من تكوين العالم غالبا ما تظهر بعد إجرائنا لكثير من الإجراءات والتقريبات لجعل شروط الظاهرة نظامية والجملة خطية.
[تحرير] الحركة الشواشية
يمكن تصنيف حركة ما بأنها شواشية إذا أبدت الخواص التالية:
- أن تكون مقيدة.
- حساسة للشروط البدئية.
- قابلية التحويل (transitive).
- تراص مساراتها الدورية (periodic orbits).
الحساسية للشروط البدئية (initial conditions) تعني أن أي جملتين متماثلتين: تسلكان مسارات مختلفة كليا ضمن فضائهما الطوري إذا اختلفت الشروط البدئية ولو بشكل ضئيل.
قابلية التحويل (transivity) تعني أنه يمكن تطبيق تابع تحويل على أي فترة زمنية ت1 بحيث يقوم بمطها ومطابقتها مع فترة زمنية أخرى ت2.
[تحرير] جواذب الحركة
أهم طرق تمثيل الحركات هي مخططات الطور حيث يقوم كل محور في نظام الإحداثيات بتمثيل أحد أبعاد حالة الجملة. فمثلا إذا كان الجسيم بحالة راحة يمكن تمثيله بنقطة في حين إذا كانت الجملة تتحرك حركة دورية فسيكون تمثيلها بمنحن مغلق بسيط. فمن المؤكد إذن أن مخطط الطور لجملة معطاة يعتمد على الشروط البدئية للجملة اضافة إلى مجموعة من المؤشرات (Parameters) لكن في الكثير من الأحيان تبين مخططات الطور بأن حركات الجمل تتطور مع الزمن لتؤدي في النهاية نفس الحركة وذلك مهما كانت الشروط البدئية, كما لو أن الجملة تنجذب لأداء هذه الحركة. لذلك ندعو هذه الأنماط من الحركات الجاذبة للجمل بالجواذب (Attractors), من هذه الجواذب ما هو بسيط على شكل نقطي أو منحنيات دائرية تدعى بالدوائر الحدية. بالمقابل تبدي الحركات الشواشية جواذب غريبة ومعقدة تدعى بالجاذب الغريب) (Strange Attractor).
[تحرير] See also
|
|
|
[تحرير] مراجع
- Li, T. Y. and Yorke, J. A. "Period Three Implies Chaos." American Mathematical Monthly 82, 985-992, 1975.
[تحرير] كتب مرجعية
- Ott, Edward (2002). Chaos in Dynamical Systems. Cambridge University Press New, York. ISBN 0-521-01084-5.
- Gutzwiller, Martin (1990). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York, LLC. ISBN 0-387-97173-4.
- Moon, Francis (1990). Chaotic and Fractal Dynamics. Springer-Verlag New York, LLC. ISBN 0-471-54571-6.
- Tufillaro, Abbott, Reilly (1992). An experimental approach to nonlinear dynamics and chaos. Addison-Wesley New York. ISBN 0-201-55441-0.
- Gollub, J. P.; Baker, G. L. (1996). Chaotic dynamics. Cambridge University Press. ISBN 0-521-47685-2.
- Baker, G. L. (1996). Chaos, Scattering and Statistical Mechanics. Cambridge University Press. ISBN 0-521-39511-9.
- Alligood, K. T. (1997). Chaos: an introduction to dynamical systems. Springer-Verlag New York, LLC. ISBN 0-387-94677-2.
- Kiel, L. Douglas; Elliott, Euel W. (1997). Chaos Theory in the Social Sciences. Perseus Publishing. ISBN 0-472-08472-0.
- Strogatz, Steven (2000). Nonlinear Dynamics and Chaos. Perseus Publishing. ISBN 0-7382-0453-6.
- Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 0-19-850840-9.
- Hoover, William Graham (1999,2001). Time Reversibility, Computer Simulation, and Chaos. World Scientific. ISBN 981-02-4073-2.
- Devaney, Robert L. (2003). An Introduction to Chaotic Dynamical Systems, 2nd ed,. Westview Press. ISBN 0-8133-4085-3.
- Badii, R.; Politi A. (1997). "Complexity: hierarchical structures and scaling in physics". Cambridge University Press. ISBN 0521663857.
[تحرير] كتب مبسطة و شائعة
- "Turbulent Mirror" by *John Briggs and David Peat
- "Seven Life Lessons of Chaos" by *John Briggs and David Peat
- The Beauty of Fractals, by H.-O. Peitgen and P.H. Richter
- Chance and Chaos, by David Ruelle
- Computers, Pattern, Chaos, and Beauty, by Clifford A. Pickover
- Fractals, by Hans Lauwerier
- Fractals Everywhere, by Michael Barnsley
- Order Out of Chaos, by Ilya Prigogine and Isabelle Stengers
- Chaos and Life, by Richard J Bird
- Does God Play Dice?, by Ian Stewart
- The Science of Fractal Images, by Heinz-Otto Peitgen and Dietmar Saupe, Eds.
- Explaining Chaos, by Peter Smith
- Chaos: Making a New Science, New York: Penguin, by James Gleick
- Complexity, by M. Mitchell Waldrop
- Chaos, Fractals and Self-organisation, by Arvind Kumar
- Chaotic Evolution and Strange Attractors, by David Ruelle
- Sync: The emerging science of spontaneous order, by Steven Strogatz
- The Essence of Chaos, by Edward Lorenz
- Deep Simplicity, by John Gribbin
- The Road To Chaos, by Yoshisuke Ueda
- The Chaos Avant-Garde: Memoirs of the Early Days of Chaos Theory, Edited by Ralph H. Abraham and Yoshisuke Ueda
- From Random Walks to Chaotic Crashes: The Linear Genealogy of the Efficient Capital Market Hypothesis, by Lawrence A. Cunningham
- Chaos Theory in the Social Sciences, edited by L Douglas Kiel, Euel W Elliott.
[تحرير] مواقع خارجية
- Nonlinear Dynamics Research Group with Animations in Flash
- The Chaos group at the University of Maryland
- The Chaos Hypertextbook. An introductory primer on chaos and fractals.
- Society for Chaos Theory in Psychology & Life Sciences
- Interactive live chaotic pendulum experiment, allows users to interact and sample data from a real working damped driven chaotic pendulum
- Nonlinear dynamics: how science comprehends chaos, talk presented by Sunny Auyang, 1998.
- Nonlinear Dynamics. Models of bifurcation and chaos by Elmer G. Wiens
- Gleick's Chaos (excerpt)
- Systems Analysis, Modelling and Prediction Group at the University of Oxford.
|
|
---|---|
تصنيفات | أنظمة • انظمة اصطلاحية • أنظمة فيزيائية • انظمة اجتماعية • علوم الأنظمة • نظرية الأنظمة • علماء الأنظمة |
مقالات | نظام • أنظمة اصطلاحية • أنظمة شكلية • انظمة معقدة • أنظمة متوائمة معقدة • أنظمة ديناميكية • أنظمة لاخطية • أنظمة معلوماتية • انظمة تشغيل • أنظمة فيزيائية • انظمة ثقافية • انظمة اقتصادية • أنظمة سياسية • أنظمة تشريعية • انظمة بيئية • نظام تحديد المواقع العالمي • أنظمة مترية • أنظمة حيوية • اجهزة الأعضاء البشرية • أنظمة إحساس • نظام عصبي • نظام شمسي • أنظمة القياسات |
حقول النظرية | نظرية الكوارث • نظرية الشواش • نظرية التحكم • نظام تلاؤمي معقد • أنظمة معقدة • سيبرينتيك •نظام متعدد العوامل • علوم الأنظمة •علم أحياء الأنظمة • ديناميات الأنظمة • علم بيئة الأنظمة • هندسة الأنظمة • نظرية الأنظمة • نظرية الأنظمة الاجتماعية التقنية • الكلانية في العلوم |
علماء الأنظمة | Russell L. Ackoff • William Ross Ashby • Gregory Bateson • Ludwig von Bertalanffy •Kenneth E. Boulding • C. West Churchman • Heinz von Foerster • Charles François • Jay Wright Forrester • Ralph W. Gerard • Debora Hammond • George Klir • Niklas Luhmann • Humberto Maturana • Donella Meadows • Howard T. Odum • Talcott Parsons • Ilya Prigogine • Anatol Rapoport • Francisco Varela • Norbert Wiener |