Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Aardwarmte - Wikipedia

Aardwarmte

Van Wikipedia

Opwekken elektriciteit via geothermische energie
Opwekken elektriciteit via geothermische energie

Aardwarmte of geothermische energie is energie die wordt gewonnen door gebruik te maken van het temperatuurverschil tussen de aardoppervlakte en diep in de aarde gelegen warmtereservoirs. Vooral in vulkanische streken (IJsland) liggen die op zo geringe diepte dat winning economisch lonend mogelijk is.

Ook in Nederland en België is deze techniek in opkomst, met name voor de temperatuurregeling in gebouwen. Grondwater, vaak op een diepte van zo'n 100 m, wordt opgepompt en 's winters gebruikt als (basis-)verwarming van gebouwen waarna het weer de bodem wordt ingepompt. In de zomer kan het grondwater dienen als koeling.

Aardwarmte kan zowel direct gebruikt worden, bijvoorbeeld om te verwarmen en te koelen, maar ook voor de opwekking van elektrische stroom of in een warmtekrachtkoppeling. Met aardwarmte wordt zowel

  • de wetenschappelijk technische bezigheden met aardwarmte als
  • de wetenschappelijke bezigheden met de thermische situatie van de aarde, geothermiek, bedoeld.

Inhoud

[bewerk] Oorsprong van geothermische energie

Aardwarmte komt voor een relatief gering deel (30 procent) voort uit de restwarmte van de tijd van het ontstaan van de aarde (accretie), voor een groter deel (70 procent) uit radioactieve vervalsprocessen, welke in de aardkorst al vele miljoenen jaren voortdurend warmte hebben opgewekt en dit vandaag nog steeds doen. Nagenoeg niet van belang zijn aandelen uit zonnestraling op het aardoppervlak en uit warmtecontact met de lucht.

De temperatuur in de binnenkern bedraagt naar verscheidene schattingen 4500 °C tot 6500 °C. 99 procent van onze planeet is warmer dan 1000 °C; 99  van de rest is nog altijd heter dan 100 °C. Bijna overal heeft de bodem op één kilometer diepte een temperatuur van 35 °C tot 40 °C (zie ook geothermische dieptemaat). Onder bijzondere geologische omstandigheden, zoals bijvoorbeeld in huidige of voormalige vulkaangebieden, ontstaan geothermische anomaliën. Hier kan de temperatuur vele honderden graden Celsius bereiken.

[bewerk] Restwarmte uit de tijd van het ontstaan van de aarde

De aarde is circa 4,6 - 4,7 miljard jaar geleden door accretie van materie ontstaan. Hierbij wordt het materiaal verhit, waarbij bewegingsenergie in warmte wordt omgezet. Deze warmteënergie zit wegens de geringe warmtegeleiding van de gesteenten en daarmee de geringe warmteafgifte aan de ruimte vandaag nog voor een groot deel in het binnenste van de aarde en kan als restwarmte uit de tijd van het ontstaan van de aarde worden gezien.

[bewerk] Radioactieve vervalsprocessen

Dit aandeel in de aardwarmte is gebaseerd op het natuurlijk verval van de in de aarde aanwezige langlevende radioactieve isotopen zoals bijvoorbeeld Uraan-235 en U238, Thorium-232 en Kalium-40. Deze elementen zijn in de kristalroosters van bepaalde mineralen ingebouwd, bijvoorbeeld in veldspaat en mica in graniet. Het gaat hier om een natuurlijke vorm van kernenergie.

Het vermogen dat uit het radioactieve verval ontstaat bedraagt ongeveer 16 · 1012 Watt. Bij een gemiddelde aardstraal van 6137 km bedraagt de geothermische vermogensdichtheid van het radioactief verval aan de aardoppervlakte ongeveer 0,032 watt per vierkante meter aardoppervlak.

[bewerk] Warmtestroom uit het binnenste van de aarde

De warmte uit de diepere delen van de aarde wordt door warmtegeleiding en convectie naar ondiepere lagen getransporteerd waarop deze kan worden gebruikt.

De aardwarmtestroom, het door de aarde per vierkante meter aan de ruimte afgegeven vermogen, is ongeveer 0,063 Watt/m² (warmtestroomdichtheid). Dit is een relatief kleine waarde en wijst er al op dat aardwarmte zich overwegend voor decentraal gebruik eigent. In anomale gebieden, zoals bijvoorbeeld vulkanische gebieden, kan de warmtestroming een veelvoud groter zijn.

Vanwege de geringe warmtestroomdichtheid wordt bij aardwarmtebenutting overwegend niet de energie gebruikt die uit de diepte naar boven komt, maar de reeds in de aardkorst opgeslagen energie. Deze wordt vanuit het centrum van de aarde zo langzaam aangevuld dat de energie bij winning dus op een gegeven moment uitgeput raakt. Een aardwarmtebenutting moet dus zo worden gedimensioneerd, dat de afkoeling van de betreffende aarddelen zo langzaam plaatsvindt dat gedurende de gehele levensduur van de installatie een economische warmteopbrengst aanwezig is.

[bewerk] Indeling van aardwarmtebronnen

Aardwarmte kan als energiebron voor de winning van warmte en stroom worden gebruikt. Hierbij wordt onderscheid gemaakt tussen:

  • Aardwarmte nabij de oppervlakte voor direct gebruik, meestal om te verhitten en te koelen.
  • Diepe aardwarmte voor direct gebruik maar ook voor stroomopwekking.

Verder wordt tussen hoog- en laagenthalpie-vindplaatsen onderscheiden. Hoogenthalpie betekent dat op dergelijke vindplaatsen een hoge temperatuur aanwezig is.

[bewerk] Diepe aardwarmte

Hoe dieper men in de aardkorst boort, hoe meer de temperatuur stijgt. Over het algemeen bereikt men per kilometer diepte een temperatuurstijging van 35 K tot 40 K (geothermische dieptemaat). De geothermische dieptemaat is echter regionaal zeer verschillend. Afwijkingen van de standaard worden aangeduid als warmteanomalieën. Interessant zijn in het bijzonder gebieden met duidelijk hogere temperaturen. Hier kunnen de temperaturen al op geringe diepte ettelijke honderden graden bedragen. Dergelijke anomalieën zijn hoofdzakelijk aan vulkanische activiteit gekoppeld. In de geothermiek gelden ze als hoogenthalpe vindplaatsen. Ze worden wereldwijd voor stroomopwekking gebruikt.

[bewerk] Hoogenthalpievindplaatsen

Land Aantal vulkanen Aardwarmte-
bronvermogen (MW)e
V.S. 133 23.000
Japan 100 20.000
Indonesië 126 16.000
Filipijnen 53 6000
Mexico 35 6000
IJsland 33 5800
Nieuw-Zeeland 19 3650
Italië (Toscane) 3 700
(Bron: Literatur/Statistik, 5.)

De wereldwijde stroomopwekking uit aardwarmte wordt door het gebruik van hoogenthalpievindplaatsen gedomineerd. Dit zijn warmteanomaliëen welke met vulkanische activiteit samengaan. Hier is water (of stoom) van meerdere honderden graden Celsius aan te treffen. Het voorkomen hiervan correleert sterk met de aanwezigheid van vulkanen in de betreffende landen.

Afhankelijk van de druk- en temperatuurvereisten kunnen hoge-enthalpievindplaatsen meer stoom- of meer watergedomineerd zijn. Vroeger werd de stoom na gebruik in de lucht geloosd, wat tot een flinke zwavelstank kon leiden (Italië, Larderello). Vandaag worden de afgekoelde vloeistoffen in de vindplaats "gereïnjecteerd" (teruggepompt). Zo worden negatieve milieu-effecten vermeden. Gelijktijdig wordt de productiviteit door het op druk houden van de vindplaats verbeterd.

[bewerk] Laagenthalpievindplaatsen

In niet-vulkanische gebieden kunnen de temperaturen in de ondergrond zeer verschillend zijn. In de regel zijn, indien voor gebruik hogere temperaturen nodig zijn, diepe boringen nodig. Voor een economische stroomopwekking zijn temperaturen hoger dan 100 °C nodig. Liggen deze in een waterhoudende grondlaag dan kan dit water opgepompt, afgekoeld en opnieuw geïnjecteerd worden. Men spreekt dan van hydrothermale geothermie. Is het gesteente waarin de hoge temperaturen worden aangetroffen weinig poreus zodat er geen water kan worden uitgehaald, dan men door een kunstmatig spletenstelsel water laten circuleren. Men spreekt dan van petrothermale geothermie. Een laatste mogelijkheid, waarbij echter in vergelijking weinig energie geëxtraheerd (onttrokken) wordt, is een diepe aardwarmtesonde, waarbij het water alleen in de sonde circuleert (gesloten systeem).

In het algemeen worden bij de diepe aardwarmte drie soorten van wateropname uit de ondergrond onderscheiden:

  • Hydrothermale systemen: in de ondergrond voorhanden warm water circuleert tussen twee bronnen door natuurlijke waterhoudende grondlagen
  • Petrothermale systemen, vaak ook HDR-systemen (Hot-Dry-Rock) genoemd: met hydraulische stimulatiemaatregelen worden in een droge ondergrond spleten en kloven gemaakt, waarin kunstmatig ingebracht water tussen twee diepe bronnen circuleert.
    In werkelijkheid is de aanname, bij deze temperaturen en diepten droge gesteenteformaties aan te treffen, niet correct. Om deze reden bestaan ook verscheidene andere aanduidingen voor deze methode: onder andere Hot-Wet-Rock (HWR), Hot-Fractured-Rock (HFR) of Enhanced Geothermal System (EGS). Een neutrale aanduiding is petrothermale systemen.
  • Diepe aardewarmtesondes: Het warmtedragend medium circuleert in een gesloten circulatie in een boring in een U-bocht of coaxiale sonde.

Welke methode in kwestie uiteindelijk wordt gebruikt is van de geologische situatie op de locatie, de benodigde hoeveelheid energie en het gewenste temperatuurniveau van het warmtegebruik afhankelijk.

[bewerk] Hydrothermale systemen

Voor de hydrothermale geothermie worden op grote diepte natuurlijk voorkomende warmwatervoorraden, zogenoemde warmwaterhoudende grondlagen aangetapt. De hydrothermale energiewinning is afhankelijk van de temperatuur alleen als water of ook als stoom mogelijk.

[bewerk] Petrothermale systemen

Gesteenten op grotere diepte vertonen een hogere temperatuur (Hot Dry Rock). Deze energie kan worden gebruikt voor zowel stoom als warmte. Om de warmte in deze gesteenten te kunnen gebruiken moeten ze door een warmtedrager worden doorstroomd, die de energie daarna aan de oppervlakte brengt. Het door de hete gesteentelagen verhitte water kan voor de bereiding van industriestoom en voor de voeding van locale en stadsverwarmingsnetwerken worden gebruikt. Bijzonder interessant is de opwekking van elektriciteit uit de hete stoom. Hiervoor wordt het in de ondergrond verhitte water gebruikt om een turbine aan te drijven. De gesloten kringloop in het circulatiesysteem staat zodanig onder druk, dat koken van het ingeperste water wordt verhinderd en de stoom pas in de turbine ontstaat.

Het in de diepte voorhandene hete gesteente wordt door middel van boringen bereikt. Hierbij is er minstens een winningsboring en een groutingsboring, welke door een gesloten waterkringloop worden verbonden. Aan het begin wordt water met enorm hoge druk in het gesteente geperst (hydraulische stimulatie); hierdoor worden stroompaden opengebroken of al bestaande verbreed en daarmee de doorlaatbaarheid van het gesteente vergroot. Deze handeling is noodzakelijk om dat anders het warmteuitwisselingsoppervlak en de doorstroombaarheid te gering zouden zijn. Het zo geschapen stelsel van natuurlijke en kunstmatige spleten vormt een onderaardse geothermische warmtewisselaar. Door de injectie-/groutingsboring wordt water in het klovenstelsel geperst, waar dit circuleert en zich opwarmt. Aansluitend wordt het door de tweede boring, de productie-/winningsboring, weer naar de oppervlakte gehaald.

In Zwitserland wordt deze techniek reeds toegepast. Het bedrijf Geothermal Explorers Ltd heeft verschillende projecten gerealiseerd. Op de site van Geothermal zijn duidelijke schema's opgenomen omtrent de "Hot Dry Rock" methode.

[bewerk] Diepe aardwarmtesondes

De diepe aardwarmtesonde is een gesloten systeem voor aardwarmtewinning. Ze bestaat uit een 2000 tot 3000 m diepe boring, waarin een vloeistof circuleert. In de regel stopt men hierbij de vloeistof in een coaxiale buis: In een dunne binnenbuis stroomt de koude vloeistof naar beneden, in de grotere buitenbuis komt de verwarmde vloeistof weer omhoog. Dergelijke warmtesonden hebben tegenover open systemen het voordeel dat er geen contact met het grondwater bestaat. Ze zijn op iedere locatie mogelijk. Hun extractievermogen hangt naast technische parameters van de temperatuur van het steenmassief en het geleidingsvermogen van het gesteente af. Ze kan echter slechts enkele honderden kilowatt bedragen en zal daarbij wezenlijk kleiner zijn dan bij een vergelijkbaar open systeem. Dit komt doordat het warmtewisselingsoppervlak met het steenmassief zeer klein is, aangezien dit praktisch gezien beperkt is tot de omtrek van het boorgat.

Nieuwe diepe aardwarmtesondes worden op dit moment (2005) in Aken (universiteit) en Arnsberg (recreatiebad Nass) gebouwd.

Als alternatief voor circulatie van water (eventueel met supplementen) in de aardwarmtesonde kunnen ook sondes met directe verdampers (warmtebuizen of Engels heat pipes) worden gebruikt. Als werkzame stof kan ofwel een vloeistof met een voldoende laag kookpunt worden gebruikt, of een mengsel van bijvoorbeeld ammoniak en water. Een dergelijke sonde kan ook onder druk en dan bijvoorbeeld met koolstofdioxide worden gebruikt. Heat pipes kunnen een hoger opnamevermogen hebben dan conventionele sondes, daar ze over hun gehele lengte de verdampingstemperatuur van de werkzame stof kunnen hebben.

[bewerk] Aardwarmte nabij het oppervlak

De temperatuur van de lucht varieert door het jaar heen zeer sterk. De bovenste lagen van de aardbodems variëren echter niet of zeer sterk gedempt mee. Vanuit wiskundig oogpunt volgt het temperatuurverloop een gedempte harmonische trilling. Op 5 tot 10 m diepte komt de in de bodem gemeten temperatuur praktisch overeen met het jaargemiddelde van de locatie.

Door middel van aardwarmtesondes (verticale of schuine boringen of horizontaal en vlak bij de oppervlakte in de bodem ingebrachte systemen), maar ook met aardgebonden betonbouwdelen wordt de warmte naar de oppervlakte gehaald. Meestal worden warmtepompen ingezet om hittetoepassingen voor gebouwen te realiseren. Met aardwarmte kan in de zomer echter ook worden gekoeld.

[bewerk] Aardwarmte uit mijnschachten

Mijnen en aardgasvelden, welke wegens uitputting van de voorraad worden stilgelegd, zijn potentiële projecten voor diepe aardwarmtewinning. Dit geldt in beperkte zin ook voor diepe tunnelbouwwerken. De betreffende formatiewateren zijn afhankelijk van de diepte van de locatie 606 tot 120 °C heet, de boringen of schachten zijn vaak nog beschikbaar en kunnen worden gebruikt om het warme water op de locatie voor aardwarmte te gebruiken.

Dergelijke installaties voor winning van geothermische energie moeten zo worden geïnstalleerd dat de vaak geldende wettelijke regels voor de veiligheid van stilgelegde mijnen blijvend in acht worden genomen.

[bewerk] Seizoensgebonden warmteopslag

Aardwarmte is altijd, dus onafhankelijk van de het tijdstip van de dag en het jaar en onafhankelijk van het weer beschikbaar. Een installatie zal echter optimaal functioneren als ze in de tijd homogeen wordt gebruikt. Dit is bijvoorbeeld het geval als in de winter verhit en in de zomer gekoeld wordt en de hierbij benodigde energiehoeveelheden ongeveer gelijk zijn. Bij koeling in de zomer vindt daarbij verwarming van het reservoir en daarmee de regeneratie ervan plaats. Deze functie wordt versterkt als de aardwarmte wordt gecombineerd met andere installaties, bijvoorbeeld zonnewarmte-installaties. Zonnethermie maakt vooral in de zomer warmte beschikbaar, maar er is dan minder warmte nodig. Door combinatie met geothermie kan deze warmte in de zomer in de onderaardse warmteopslag worden opgeslagen en in de winter weer naar boven gehaald. De verliezen zijn, afhankelijk van de locatie, in de regel gering.

Seizoensgebonden opslag kan zowel nabij de oppervlakte als diep worden uitgevoerd. Zogenaamde hogetemperatuuropslag (> 50 °C) is echter alleen op grotere diepte denkbaar. Het Rijksdaggebouw in Berlijn beschikt bijvoorbeeld over een dergelijke opslag.

[bewerk] Gebruik van aardwarmte

Aardwarmte is een onuitputtelijke energiebron. Met de voorraden die in onze planeet zijn opgeslagen kan in principe het wereldwijde energiegebruik worden gedekt.

Bij gebruik van aardwarmte onderscheidt men direct gebruik, dus het gebruik van de warmte zelf, en het gebruik na omzetting in elektriciteit in een geothermiecentrale. Vanuit het oogpunt van de optimalisatie van het rendement is een warmtekrachtkoppeling (WKK) ideaal. Het probleem hierbij zijn de afnemers van de warmte. Niet op iedere locatie waar een centrale staat zullen afnemers voor de warmte te vinden zijn. De overstap naar uitsluitend WKK-projecten blijft een wensdroom.

[bewerk] Direct gebruik

Gebruikstype Temperatur
°C
Inkoken en verdampen, zeewaterontzilting 120
Drogen van cementplanten 110
Drogen van organisch material zoals hooi, groente, wol 100
Luchtdrogen van stokvis 90
Ruimteverwarming (klassiek) 80
Koeling 70
Veeteelt 60
Paddenstoelteelt, balneologie, gebruikt warm water 50
Vloerverwarming 40
Zwembaden, ijsvrijhouding, compost, gisting 30
Visteelt 20
Natuurlijke koeling <10
Lindaldiagram

Aardwarmte wordt al meer dan 10.000 jaar gebruikt. Onze voorvaderen hebben vermoedelijk geothermisch verwarmd water gebruikt om te koken, te baden en te verwarmen.

Oude balneologische gebruiksvormen zijn de thermen uit de Romeinse tijd, het Middeleeuwse China en bij de Ottomanen. In Chaudes-Aigues in centraal Frankrijk bevindt zich het eerste historische geothermische stadsverwarmingsnet waarvan het begin tot in de 14e eeuw teruggaat.

Warmte wordt vandaag de dag op velerlei wijze gebruikt (warmtemarkt). Een klassieke weergave van de daarbij benodigde temperaturen is het Lindaldiagram (Balder Lindal, 1918-1997):

Voor de meeste toepassingen zijn slechts relatief lage temperaturen nodig. Uit diepe aardwarmte kunnen de benodigde temperaturen vaak direct ter beschikking worden gesteld. Als deze niet voldoende is kan de temperatuur met warmtepompen worden verhoogd, zoals dit meestal bij aardwarmte nabij de oppervlakte gebeurt; hier zijn zonder warmtepomp slechts weinig toepassingen mogelijk. De belangrijkste daarvan is de natuurlijke koeling, waarbij water op de temperatuur van de ondergrond wordt gebracht, ofwel de gemiddelde jaartemperatuur, en daarna direct voor gebouwkoeling wordt gebruikt. Deze natuurlijke koeling heeft het potentieel wereldwijd miljoenen elektrisch aangedreven airconditioners te vervangen. Ze wordt op dit moment echter nog weinig gebruikt.

Een ander direct gebruik is het ijsvrij houden van bruggen en straten. Ook hier is geen warmtepomp nodig, de opslag wordt door afvoer en opslag van de warmte van de warme rijbaan in de zomer geregenereerd. Ook het vorstvrij blijven van waterleidingen hoort hierbij; de in de bodem opgeslagen warmte zorgt dat deze in de winter maar tot op geringe diepte bevriest.

Voor het gebruik van warmte uit diepe aardwarmte zijn de middelwarme dieptewateren geschikt, met temperaturen tussen 40 en 100 °C, die vooral in het Zuidduitse Molassebekken, in de Rijnslenk en in delen van de Noordduitse Laagvlakte voorkomen. Het warme water wordt gewoonlijk vanaf een diepte van 1000 tot 2500 meter via een winningsboring aan de oppervlakte gebracht. Dit geeft het belangrijkste deel van zijn warmteënergie doormiddel van een warmtewisselaar af aan een tweede, secundair, warmwatercirculatiesysteem. Afgekoeld wordt het daarna via een tweede boring weer in de ondergrond geperst en wel terug in de laag waaruit het gekomen is.

Gebruikstype Energie
TJ/a
Vermogensafgave
jaargemiddelde
GW
Warmtepompen 86.673 2,75
Baden 75.289 2,39
Ruimteverwarming 52.868 1,68
Broeikassen 19.607 0,62
Industrie 11.068 0,35
Landbouw 10.969 0,35
Droging (landbouw) 2013 0,06
Koelen, sneeuwsmelten 1885 0,06
Ander gebruik 1045 0,03
Total 261.418 8,29
Direct gebruik van aardwarmte wereldwijd
(Stand: 2004, Bron: Literatur/Statistik, 3.)

[bewerk] Stroomopwekking

De eerste keer dat aardwarmte voor het opwekken van elektriciteit werd gebruikt was in Larderello in Toscane. In 1913 werd door graaf Piero Ginori Conti een krachtcentrale gebouwd waarin met waterdamp aangedreven turbines een vermogen van 220 kW opwekten. Vandaag wordt ongeveer 400 MW aan het Italiaanse energienet geleverd. Onder Toscane treffen de Noord-Afrikaanse en de Euraziatische plaat elkaar, wat er toe leidt dat magma zich relatief dicht onder de aardoppervlakte bevindt. Dit hete magma verhoogt hier de temperatuur van de bodem dusdanig dat economisch gebruik van de aardwarmte mogelijk is.

Bij hydrothermale stroomopwekking zijn watertemperaturen van minstens 100 °C nodig. Hydrothermale installaties waarbij temperaturen van meer dan 150 °C voorkomen kunnen direct voor het aandrijven van turbines worden gebruikt. Deze temperaturen zijn echter lang niet overal beschikbaar. Hierdoor werd aardwarmte op veel plaatsen uitsluitend voor verwarming van gebouwen gebruikt. Ook in Nederland is dit het geval. Nieuw ontwikkelde "Organic Rankine Cycle"-installaties (ORC) maken echter temperaturen vanaf 80 °C geschikt voor stroomopwekking. Deze werken met een organisch medium, dat bij relatief geringe temperaturen verdampt. Deze damp drijft over een turbine de stroomgenerator aan. Een alternatief voor de ORC-methode is de Kalinamethode. Hier worden mengsels van twee stoffen, bijvoorbeeld uit ammoniak en water als werkzame stoffen gebruikt. Voor installaties van laag vermogen (< 200 kW) zijn ook motorische installaties als Stirlingmotoren denkbaar. Aardwarmte is geschikt om grondbelasting van het stroomnet mee te bedienen.

De stroomopwekking uit aardwarmte gebeurt traditioneel in landen die over hoogenthalpievindplaatsen beschikken, waarin temperaturen van meerdere honderden graden op relatief geringe diepte (< 2000 m) worden aangetroffen. De locaties kunnen daarbij afhankelijk van druk en temperatuur, water of stoomgedomineerd zijn. Bij moderne winningstechnieken worden de afgekoelde vloeistoffen gereïnjecteerd, zodat paktisch geen negatieve milieueffecten zoals zwavelreuk meer optreden.

[bewerk] Geothermie wereldwijd

Land Energie-
omzet
per jaar
TJ/a
Vermogensafgave
jaargemiddelde
GW
China 45.373 1,44
Zweden 36.000 1,14
V.S. 31.239 0,99
IJsland 23.813 0,76
Turkije 19.623 0,62
Hongarije 7940 0,25
Italië 7554 0,24
Nieuw-Zeeland 7086 0,22
Brazilië 6622 0,21
Georgië 6307 0,20
Rusland 6243 0,20
Frankrijk 5196 0,16
Japan 5161 0,16
Som 208.157 6,60
(Bron: Literatur/Statistik, 3.)
Land Nieuw
geïnstalleerd
vermogen
MWe
Italië 254
Indonesië 250
Mexico 198
Kenia 92
V.S. 60
Rusland 50
IJsland 30
Filipijnen 22
Costa Rica 18
(Bron: Literatur/Statistik, 1.)
Land Aandeel van
stroomopwekking
in %
Aandeel van
warmtemarkt
in %
Tibet 30 30
San Miguel Island 25 geen opgave
El Salvador 14 24
IJsland 13,7 16,6
Filipijnen 12,7 19,1
Nicaragua 11,2 9,8
Kenia 11,2 19,2
Lihir Island 10,9 geen opgave
Guadeloupe 9 9
Costa Rica 8,4 15
Nieuw-Zeeland 5,5 7,1
(Bron: Literatur/Statistik, 6.)

Geothermie is een belangrijke duurzame energiebron. Een bijzondere bijdrage in het gebruik wordt verzorgd door de landen die over hoogenthalpe vindplaatsen beschikken. Daarbij kan het aandeel van aardwarmte in de totale energieverzorging van zo'n land aanzienlijk zijn, bijvoorbeeld aardwarmte in IJsland.

[bewerk] Direct gebruik internationaal

In 2005 waren voor direct gebruik van geothermie wereldwijd installaties met een vermogen van 261.418 Terajoule per jaar (72.616 gigawattuur per jaar); dat komt met een gemiddelde vermogensafgifte van 8,29 GW of bij een wereldbevolking van 6,465 miljard mensen in 2005 met 1,28 watt per persoon op aarde overeen. Het gemiddelde energieverbruik per persoon op aarde is 2100 Watt, ofwel 0,061% van het primaire energieverbruik in de wereld komt uit aardwarmte. De bezettingsgraad van het geïnstalleerde vermogen bedraagt verder ongeveer 30% (dit kental is belangrijk voor de berekening van de economische haalbaarheid van geplande installaties).

In de tabel staan landen met een energieomzet van meer dan 5000 TJ/jaar.

Bijzonder opvallend zijn Zweden en IJsland. Zweden is geologisch gezien in het nadeel, maar heeft door een consequent beleid en goede PR dit hoge aandeel van duurzame energie voor verwarmingsdoeleinden bereikt.

Ook in IJsland heeft het gebruik van deze energie een belangrijk aandeel in de energieverzorging van het land (ca. 16%). Het land loopt op dit gebied intussen wereldwijd voorop.

[bewerk] Stroomopwekking internationaal

Stroomopwekking uit geothermie concentreert zich traditioneel in landen die over hoogenthalpe vindplaatsen beschikken (veelal vulkaangebieden). In landen waar dit zoals in Nederland niet beschikbaar is kan elektriciteit bij relatief lage temperaturen, zo'n 100-150 °C worden opgewekt, of dient men diep te boren. Op dit moment is wereldwijd een hausse aan de gang bij het gebruik van aardwarmte voor elektriciteitsopwekking. Het geïnstalleerd vermogen bedroeg in 2004: 8912 GW en hiermee werd 56.798 GWh/a elektrische energie opgewekt.

Laagenthalpe vindplaatsen worden tot nog toe wereldwijd weinig gebruikt. In de toekomst zullen ze aan belang winnen gezien deze gebruiksvorm overal mogelijk is en geen speciale eisen aan de geologische situatie stelt. In Duitsland werd in 2003 de eerste installatie van dit soort in gebruik genomen, het Geothermie-Kraftwerk Neustadt-Glewe. In Nederland of België bestaan er tot op heden (2006) nog geen plannen om aardwarmte voor elektriciteitsopwekking te gaan gebruiken.

De laatste 5 jaar werd het gebruik van aardwarmte voor stroomopwekking sterk opgevoerd. Betreffende landen wereldwijd staan in de tabel van de toenamen voor de periode 2000-2005.

Betreffende het gebruik per hoofd van de bevolking is IJsland op dit moment koploper met 200 MWe geïnstalleerd vermogen (geothermie in IJsland). De V.S. van Amerika leiden daarentegen met een geïnstalleerd vermogen van 2000 MWe nog voor Indonesië.

[bewerk] Situatie in Nederland

In Nederland zijn nog geen grote aardwarmteprojecten uitgevoerd, de toepassing van aardwarmte beperkt zich vooralsnog tot thermische baden. Er zijn plannen om aardwarmte te gebruiken voor de verwarming van kassen in de glastuinbouw. Nederland beschikt alleen over laagenthalpievindplaatsen, waarbij de temperatuur onder het oosten van Friesland het hoogst is, zo'n 95 graden Celsius. Verder vinden we een warme ondergrond in het Noorden van Groningen, de westelijke Waddenzee, Zuidoost-Drenthe, de Achterhoek, de Veluwe en Noord-Limburg. Met de relatief lage temperaturen die in Nederland worden aangetroffen is het waarschijnlijk niet mogelijk om in Nederland hiermee elektriciteit op te wekken.

[bewerk] Situatie in België

In België blijft de toepasbaarheid van aardwarmte beperkt tot de provincies Antwerpen en Limburg, waar de vereiste watervoerende lagen aanwezig zijn. Er wordt ook gestudeerd op het gebruik van oude mijnschachten voor dit doel. Op dit moment zijn in België geen installaties van betekenis in bedrijf. Ook in België zal naar verwachting geen elektriciteitsproductie mogelijk zijn.

[bewerk] Economische aspecten

Het geringe gebruik van de overal voorhanden zijnde en van energieaanbod vrijwel kosteloze aardwarmte is gebaseerd op het feit dat zowel de warmtestroom, met ~0,06 Watt/m² alsook de temperatuurtoename met de diepte, met ~3°C/100 m in de toegankelijke delen van de aardkorst, afgezien van bijzondere locaties, dusdanig gering is dat het gebruik ervan met de tot nog toe geringe energieprijzen niet economisch rendabel was. De bewustwording van het CO2-probleem en de uitputting van de fossiele brandstoffen binnen afzienbare tijd, hebben geleid tot een sterkere verkenning en ontwikkeling van aardwarmtetechnologie.

Gezien de eigenlijke energie, de aardwarmte, kosteloos is, wordt de economische levensvatbaarheid van een aardwarmtetoepassing bovenal door de investeringskosten en de onderhoudskosten van de installatie bepaald.

 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu