Tempo próprio
Origem: Wikipédia, a enciclopédia livre.
Em Relatividade especial e Relatividade geral, o tempo próprio é o parâmetro invariante em relação ao qual calculamos as derivadas temporais dos quadrivetores, de maneira que continuem se transformando como tal sob uma mudança de referencial.
Na Relatividade especial, o quadrivetor posição xμ se transforma sob uma matriz de mudança de referencial (ou seja, uma transformação de Lorentz). Para definirmos a dinâmica completamente em todos os referenciais inerciais é necessário que a velocidade, a aceleração e todas as demais grandezas vetoriais se transformem da mesma maneira. A velocidade definida como a derivada da posição em relação ao tempo não respeita essa propriedade, pois o tempo não é mais um parâmetro invariante, ao contrário do que afirma a mecânica clássica. Dessa forma, é necessário que seja definida uma derivada em termos de um parâmetro que tenha dimensão de tempo, mas que seja invariante por uma transformação de Lorentz.
Uma grandeza escalar em Relatividade especial é tal que seja invariante sob transformações de Lorentz. Uma grandeza que obedece a esse critério é o intervalo, ou elemento de distância:
- ds2 = gμνdxμdxν
Essa grandeza tem dimensão de comprimento. Se a dividirmos pela velocidade da luz, ela passa a possuir dimensão de tempo. Como a velocidade da luz é um invariante relativístico, essa nova quantidade também o será. Portanto, o tempo próprio de um referencial é definido como:
Se usarmos o sistema de unidades naturais, o tempo próprio é de fato o elemento de distância.
Na Relatividade geral a construção é exatamente a mesma. Como lidamos com referenciais genéricos, o tempo próprio é indispensável, pois o elemento de distância (assim como a velocidade da luz) é invariante mesmo sob mudanças gerais de referencial.