Критерий устойчивости Найквиста — Михайлова
Материал из Википедии — свободной энциклопедии
Критерий устойчивости Найквиста — Михайлова — один из способов судить об устойчивости замкнутой системы управления по её разомкнутой АФЧХ. Является одним из частотных критериев устойчивости. С помощью этого критерия оценить устойчивость весьма просто, без необходимости вычисления полюсов передаточной функции замкнутой системы.
Содержание |
[править] Условие устойчивости
Передаточная функция динамической системы может быть представлена в виде дроби
- .
Устойчивость достигается тогда, когда все её полюса находятся в левой полуплоскости на плоскости корней. В правой полуплоскости их быть не должно. Если получена замыканием отрицательной обратной связью разомкнутой системы с передаточной функцией , тогда нули передаточной функции замкнутой системы являются нулями функции Выражение называется характеристическим уравнением системы.
[править] Принцип аргумента Коши
Из теории функций комплексного переменного известно, что контур охватывающий на -плоскости некоторое число неаналитических точек может быть отображён на другую комплексную плоскость (плоскость ) при помощи функции таким образом, что получившийся контур будет охватывать центр -плоскости раз, причём , где — число нулей, а — число полюсов функции . Положительным считается направление, совпадающее с направлением контура , а отрицательным — противоположное ему.
[править] Формулировка критерия
Сначала построим контур, охватывающий правую полуплоскость комплексной плоскости. Контур состоит из следующих участков:
- участок, идущий вверх по оси , от до .
- полуокружность радиусом , начинающаяся в точке и достигающая конца в точке по часовой стрелке.
Далее отображаем этот контур посредством передаточной функции разомкнутой системы , в результате чего получаем плоскость АФЧХ системы. Согласно принципу аргумента число оборотов по часовой стрелке вокруг начала координат должно быть равно количеству нулей функции минус количество полюсов в правой полуплоскости. Если рассматривать вместо начала координат точку , получим разницу между числом нулей и полюсов в правой полуплоскости для функции . Заметив, что функция имеет такие же полюса, что и функция , а полюса разомкнутой системы являются нулями замкнутой системы, сформулируем критерий Найквиста — Михайлова:
Пусть — замкнутый контур в комплексной плоскости, — число полюсов , охваченных контуром , а — число нулей , охваченных — то есть число полюсов охваченных . Получившийся контур в -плоскости, должен для обеспечения устойчивости замкнутой системы охватывать (по часовой стрелке) точку раз, где .
Следствия критерия Найквиста-Михайлова:
- Если разомкнутая система с передаточной функцией устойчива, замкнутая система является устойчивой, если АФЧХ разомкнутой системы не охватывает точку −1.
- Если разомкнутая система неустойчива, то количество оборотов вокруг точки −1 должной быть равно числу полюсов в правой полупоскости.
- Количество дополнительных охватов (больше, чем ) вокруг точки −1 в точности равно количеству неустойчивых полюсов замкнутой системы.
[править] См. также
- Критерий устойчивости Рауса
- Критерий устойчивости Гурвица
- Критерий устойчивости в пространстве состояний
- ЛАФЧХ