Электрический конденсатор
Материал из Википедии — свободной энциклопедии
Конденса́тор — система из двух и более электродов (обкладок), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Такая система обладает взаимной ёмкостью и способна сохранять электрический заряд.
Содержание |
[править] История
В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».
[править] Свойства конденсатора
Конденсатор в цепи постоянного тока не проводит ток, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит электричество, так как колебания переменного тока вызывают циклическую перезарядку конденсатора и, следовательно, ток в цепи.
В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом ZC = 1/(jωC), где j — мнимая единица, ω — угловая частота протекающего синусоидального тока, C — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: RC = 1/(ωC). Соответственно, для постоянного тока частота равна нулю, а сопротивление конденсатора бесконечно (в идеальном случае).
При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью С, собственной индуктивностью LС и сопротивлением потерь Rn.
При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.
[править] Обозначение конденсаторов на схемах
В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74:
Обозначение по ГОСТ 2.728-74 |
Описание |
---|---|
Конденсатор постоянной емкости | |
Поляризованный конденсатор | |
Подстроечный конденсатор |
[править] Характеристики конденсаторов
[править] Основные параметры
[править] Ёмкость
Основной характеристикой конденсатора является его электрическая ёмкость (точнее номинальная ёмкость), которая определяет накопленный заряд. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.
Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой: C = (ε·ε0·S)/d, где ε — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда d много меньше линейных размеров пластин).
Для получения больших ёмкостей конденсаторы соединяют параллельно. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.
При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна
Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.
[править] Удельная ёмкость
Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объему (или массе) конденсатора.
[править] Номинальное напряжение
Другой не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.
Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.
[править] Полярность
Многие конденсаторы с оксидным диэлектриком (электролитические) имеют униполярную проводимость, вследствие чего их эксплуатация возможна только при положительном потенциале на аноде.
[править] Паразитные параметры
Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:
|
[править] Электрическое сопротивление изоляции конденсатора — r
Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.
[править] Эквивалентное последовательное сопротивление — R
Эквивалентное последовательное сопротивление обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними. В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., en:Capacitor plague).
[править] Эквивалентная последовательная индуктивность — L
Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.
[править] Тангенс угла потерь
Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол π/2−δ (δ — угол диэлектрических потерь). При отсутствии потерь δ = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная tg δ, называется добротностью конденсатора.
[править] Температурный коэффициент ёмкости (ТКЕ)
ТКЕ — это параметр, характеризующий зависимость ёмкости конденсатора от температуры. Практически ТКЕ определяют как относительное изменение ёмкости конденсатора при изменении температуры на 1 °C. Однако ТКЕ определяется не для всех типов конденсаторов.
[править] Диэлектрическое поглощение
Если заряженный конденсатор быстро разрядить до нулевого напряжения путем подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение. Конденсатор ведет себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Наименьшим диэлектрическим поглощением обладают конденсаторы с тефлоновым (фторопластовым) диэлектриком.
[править] Классификация конденсаторов
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.
По виду диэлектрика различают:
- Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
- Конденсаторы с газообразным диэлектриком.
- Конденсаторы с жидким диэлектриком.
- Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
- Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
- Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью! В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесенный непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
- Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
- Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
- Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.
[править] Применение конденсаторов
Конденсаторы находят применение практически во всех областях электротехники.
- Конденсаторы (совместно с индуктивностями и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..
- При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, импульсных лазерах с оптической накачкой и т. п.
- Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
- В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и фильтрах высших гармоник.