Normalna porazdelitev
Iz Wikipedije, proste enciklopedije
Normalna porazdelitev (tudi Gaussova porazdelitev) je verjetnostna porazdelitev vrednosti statističnih enot v statistični populaciji, ki je v grafični predstavitvi oblikovana v obliki zvona oziroma normalne krivulje. Vanjo sodi družina porazdelitev, ki imajo različne parametre (npr. aritmetično sredino in standardni odklon), a oblikujejo enake grafe porazdelitve. Standardna normalna porazdelitev je porazdelitev vrednosti s povprečjem (aritmetično sredino) 0 in standardnim odklonom 1.
Normalna porazdelitev je izrednega pomena za kvantitativne metode različnih znanosti, saj ji sledi množica pojavov; po normalni krivulji se tako porazdeljuje človekova višina in masa, stopnja IQ idr. Predpostavljanje normalne porazdelitve je bistveno za množico statističnih izračunov, saj velja, da se vzorec, ki je izvzet iz celotne populacije, porazdeljuje približno po normalni krivulji tudi, če vrednosti vseh enot matične populacije niso porazdeljene normalno.
[uredi] Zgodovina
O normalni porazdelitvi je prvi razpravljal francoski matematik Abraham de Moivre leta 1733, teorijo pa je dalje razvil Pierre Simon de Laplace leta 1812. Danes se po dveh znanstvenikih imenuje teorem de Moivre-Laplace.
De Laplace je teorijo normalne porazdelitve uporabljal za preučevanje napak v poskusih. Za nadaljnji razvoj je bila pomembna metoda najmanjših kvadratov, ki jo je uvedel Adrien Legendre leta 1805. Carl Friedrich Gauss pa si je nauk o normalni porazdelitvi lastil že od leta 1794 in ga utemeljil leta 1809 z razpravo o normalni porazdelitvi napak.