จำนวนอตรรกยะ
จากวิกิพีเดีย สารานุกรมเสรี
ในวิชาคณิตศาสตร์ จำนวนอตรรกยะ คือจำนวนจริงใดๆที่ไม่ใช่จำนวนตรรกยะ นั่นก็คือจำนวนที่ไม่สามารถเขียนในรูปเศษส่วนที่มีทั้งตัวเศษและส่วนเป็นจำนวนเต็มได้ หรือกล่าวได้ว่ามันไม่สามารถเขียนในรูป
ได้ เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ เห็นได้ชัดว่าจำนวนอตรรกยะคือจำนวนที่ไม่ว่าเขียนทศนิยมในฐานใดก็ตามจะไม่รู้จบ และไม่มีรูปแบบตายตัว แต่นักคณิตศาสตร์ก็ไม่ได้ให้นิยามจำนวนอตรรกยะเช่นนั้น จำนวนจริงเกือบทั้งหมดเป็นจำนวนอตรรกยะโดยนัยที่จะอธิบายต่อไปนี้
จำนวนอตรรกยะบางจำนวนเป็นจำนวนพีชคณิต เช่น √2 รากที่สองของ 2 3√5 รากที่สามของ 5 และสัดส่วนทอง แทนด้วยอีกษรกรีก (ไฟ) หรือบางครั้ง τ (เทา) ที่เหลือเป็นจำนวนอดิศัย เช่น π และ e
เมื่ออัตราส่วนของความยาวของส่วนของเส้นตรงสองเส้นเป็นจำนวนอตรรกยะ เราเรียกส่วนของเส้นตรงทั้งสองเส้นนั้นว่าวัดไม่ได้ (incommensurable) หมายความว่า ทั้งสองเส้นไม่มีมาตรวัดเดียวกัน มาตรวัดของส่วนของเส้นตรง I ในที่นี้หมายถึงส่วนของเส้นตรง J ที่วัด I โดยวาง J แบบหัวต่อหางเป็นจำนวนเต็มจนยาวเท่ากับ I
จำนวนอตรรกยะ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ จำนวนอตรรกยะ ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |