New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
伯努利数 - Wikipedia

伯努利数

维基百科,自由的百科全书

數學上,伯努利數Bn的第一次發現是與下述數列和的公式有關:

\sum_{k=0}^{m-1} k^n = 0^n + 1^n + 2^n + \cdots + {(m-1)}^n

其中n為固定的任意正整數。

這數列和的公式必定是變數為m,次數為n+1的多項式,稱為伯努利多項式。伯努利多項式的係數與伯努利數有密切關係如下:

\sum_{k=0}^{m-1} k^n = {1\over{n+1}}\sum_{k=0}^n{n+1\choose{k}} B_k m^{n+1-k}

舉例說,把n取為1,我們有0 + 1 + 2 + ... + (m−1) = 1/2 (B0 m2 + 2 B1 m1) = 1/2 (m2m)。

伯努利數最先由雅各·伯努利研究,棣莫弗以他來命名。

伯努利數可以由下列遞推公式計算:

\sum_{j=0}^m{m+1\choose{j}}B_j = 0

初值條件為B0 = 1。

伯努利數也可以用母函數技巧定義。它們的指數母函數是x/(ex − 1),使得對所有絕對值小於2π的x(冪指數的收斂半徑),有

\frac{x}{e^x-1} = \sum_{n=0}^{\infin} B_n \frac{x^n}{n!}

有時會寫成小寫bn,以便與貝爾數分別開。

最初幾項伯努利數記於下(於OEIS內的數列A027641A027642):

n Bn
0 1
1 −1/2
2 1/6
3 0
4 −1/30
5 0
6 1/42
7 0
8 −1/30
9 0
10 5/66
11 0
12 −691/2730
13 0
14 7/6

可以證明對所有不是1的奇數nBn = 0。

乍看起來突兀的B12 = −691/2730,喻示伯努利數不能以初等方式描述;其實它們是黎曼ζ函數於負整數的值,有深邃的數論性質聯繫,所以不能預期有簡單的計算公式。

伯努利數出現在正切和雙曲正切函數的泰勒級數展開式、歐拉─麥克勞林公式,及黎曼ζ函數的一些值的表達式。

1842年的艾達拜倫的分析機筆記的筆記G,第一次記述了一個讓電腦產生伯努利數的演算式。

目录

[编辑] 一些等式

歐拉以黎曼ζ函數表達伯努利數為:

B_{2k}=2(-1)^{k+1}\frac {\zeta(2k)\; (2k)!} {(2\pi)^{2k}}

在[−1, 0]區間上的連續均勻概率分佈n階累積量是Bn/n

[编辑] 伯努利數的算術性質

伯努利數可以用黎曼ζ函數表達為Bn = − nζ(1 − n),也就說明它們本質上是這函數在負整數的值。因此,可推測它們有深刻的算術性質,事實也的確如此,這是庫默爾(Kummer)研究費馬最後定理時發現的。

伯努利數的可整除性是與分圓域的理想類群有關。這關係由庫默爾的一道定理和更強的埃爾貝朗-里貝定理(Herbrand-Ribet)描述。而這性質與實二次域的關係由安克尼-阿廷-喬拉猜想(Ankeny-Artin-Chowla)給出。伯努利數還和代數K理論有關:若cnBn/2n的分子,那樣K_{4n-2}(\Bbb{Z})的階是−c2nn為偶數;2c2nn為奇數。

與整除性也有關連的是馮·施陶特-克勞森定理(von Staudt-Clausen)。這定理是說,凡是適合p − 1整除n的質數p,把1/p加到Bn上,我們會得到一個整數。這個事實給出了非零伯努利數Bn的分母的特徵:這些分母是適合p − 1整除n的所有質數p的乘積;故此它們都無平方因子,也都可以被6整除。

吾鄉-朱加猜想猜測p是質數當且僅當pBp−1p同餘於−1。

[编辑] p進連續性

伯努利數的一個特別重要的同餘性質,可以表述為p進連續性。若bmn 是正整數,使得mn不能被p − 1整除,及m \equiv n\, \bmod\,p^{b-1}(p-1),那麼

(1-p^{m-1}){B_m \over m} \equiv (1-p^{n-1}){B_n \over n} \,\bmod\, p^b

因為Bn = − nζ(1 − n),這也可以寫成

(1-p^{-u})\zeta(u) \equiv (1-p^{-v})\zeta(v)\, \bmod \,p^b\,

其中u = 1 − mv = 1 − n,使得uv非正,及不是模p − 1同餘於1。這告訴我們,黎曼ζ函數的歐拉乘積公式中去掉1 − pz後,對適合模p − 1同餘於某個a \not\equiv 1\, \bmod\, p-1的負奇數上的p進數連續,因此可以延伸到所有p進整數\Bbb{Z}_p\,,得出p進ζ函數

[编辑] 伯努利數的幾何性質

n \ge 2時給出可平行流形邊界的怪(4n−1)球,對於它們的微分同胚類的循環群的階,有凱爾韋爾-米爾諾公式(Kervaire-Milnor),用到了伯努利數。若BB4n/n的分子,那麼這種怪球的數目是22n − 2(1 − 22n − 1)B。(拓撲學文章中的公式與這裡不同,因為拓撲學家為伯努利數編號的習慣不同。本文跟隨數論家的編號習慣。)

[编辑] 參見

[编辑] 外部鏈結

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu