New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
向量自回归模型 - Wikipedia

向量自回归模型

维基百科,自由的百科全书

向量自回归模型(简称VAR模型)是一种常用的计量经济模型,由克里斯托弗·西姆斯(Christopher Sims)提出。它是AR模型的推广。

目录

[编辑] 定义

VAR模型描述在同一样本期间内的n变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:

y_{t}=c + A_{1}y_{t-1} + A_{2}y_{t-2} + \cdots + A_{p}y_{t-p} + e_{t},

其中:cn x 1常数向量Ain x n矩阵。etn x 1误差向量,满足:

  1. \mathrm{E}(e_{t}) = 0\, —误差项的均值为0
  2. \mathrm{E}(e_{t}e_{t}') = \Omega\, —误差项的协方差矩阵为Ω(一个n x n正定矩阵)
  3. \mathrm{E}(e_{t}e_{t-k}') = 0\, (对于所有不为0的k都满足)—误差项不存在自相关

[编辑] 例子

一个有两个变量的VAR(1)模型可以表示为:

\begin{bmatrix}y_{1,t} \\ y_{2,t}\end{bmatrix} = \begin{bmatrix}c_{1} \\ c_{2}\end{bmatrix} + \begin{bmatrix}A_{1,1}&A_{1,2} \\ A_{2,1}&A_{2,2}\end{bmatrix}\begin{bmatrix}y_{1,t-1} \\ y_{2,t-1}\end{bmatrix} + \begin{bmatrix}e_{1,t} \\ e_{2,t}\end{bmatrix},

或者也可以写为以下的方程组:

y_{1,t} = c_{1} + A_{1,1}y_{1,t-1} + A_{1,2}y_{2,t-1} + e_{1,t}\,
y_{2,t} = c_{2} + A_{2,1}y_{1,t-1} + A_{2,2}y_{2,t-1} + e_{2,t}.\,

[编辑] 转换VAR(p)为VAR(1)

VAR(p)模型常常可以被改写为VAR(1)模型。 比如VAR(2)模型:

yt = c + A1yt − 1 + A2yt − 2 + et

可以转换成一个VAR(1)模型:

\begin{bmatrix}y_{t} \\ y_{t-1}\end{bmatrix} = \begin{bmatrix}c \\ 0\end{bmatrix} + \begin{bmatrix}A_{1}&A_{2} \\ I&0\end{bmatrix}\begin{bmatrix}y_{t-1} \\ y_{t-2}\end{bmatrix} + \begin{bmatrix}e_{t} \\ 0\end{bmatrix},

其中I单位矩阵

[编辑] 结构与简化形式

[编辑] 结构向量自回归

一个结构向量自回归(Structural VAR)模型可以写成为:

B_{0}y_{t}=c_{0} + B_{1}y_{t-1} + B_{2}y_{t-2} + \cdots + B_{p}y_{t-p} + \epsilon_{t},

其中:c0n x 1常数向量Bin x n矩阵,εtn x 1误差向量。

一个有两个变量的结构VAR(1)可以表示为:

\begin{bmatrix}1&B_{0;1,2} \\ B_{0;2,1}&1\end{bmatrix}\begin{bmatrix}y_{1,t} \\ y_{2,t}\end{bmatrix} = \begin{bmatrix}c_{0;1} \\ c_{0;2}\end{bmatrix} + \begin{bmatrix}B_{1;1,1}&B_{1;1,2} \\ B_{1;2,1}&B_{1;2,2}\end{bmatrix}\begin{bmatrix}y_{1,t-1} \\ y_{2,t-1}\end{bmatrix} + \begin{bmatrix}\epsilon_{1,t} \\ \epsilon_{2,t}\end{bmatrix},

其中:

\Sigma = \mathrm{E}(\epsilon_{t}\epsilon_{t}') = \begin{bmatrix}\sigma_{1}&0 \\ 0&\sigma_{2}\end{bmatrix};

[编辑] 简化向量自回归

把结构向量自回归与B0逆矩阵相乘:

y_{t} = B_{0}^{-1}c_{0} + B_{0}^{-1}B_{1}y_{t-1} + B_{0}^{-1}B_{2}y_{t-2} + \cdots + B_{0}^{-1}B_{p}y_{t-p} + B_{0}^{-1}\epsilon_{t},

让:

B_{0}^{-1}c_{0} = c, B_{0}^{-1}B_{i} = A_{i} 对于 i = 1, \cdots, p\,B_{0}^{-1}\epsilon_{t} = e_{t}

我们得到p-阶简化向量自回归(Reduced VAR):

y_{t}=c + A_{1}y_{t-1} + A_{2}y_{t-2} + \cdots + A_{p}y_{t-p} + e_{t}
其他语言

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu