考拉兹猜想
维基百科,自由的百科全书
考拉兹猜想,又称为3n+1猜想、角谷猜想、哈塞猜想、乌拉姆猜想或叙拉古猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
例如取一个数字 n = 6,根据上述数式,得出 6→3→10→5→16→8→4→2→1 。考拉兹猜想称,任何正整数,经过上述计算步骤後,最终都会得到 1 。
也可以叫“奇偶归一猜想”。
以下是这个猜想的计算机代码。它会在答案得到1时停下来,以避免作4→2→1这个无限循环。
def collatz(n) print n if n.odd? and n > 1 collatz(3n + 1) else if n.even? collatz(n / 2)
在1930年代,德国汉堡大学的学生考拉兹,曾经研究过这个猜想,因而得名。在1960年,日本人角谷静夫也研究过这个猜想。但这猜想到目前,仍没有任何进展。
保羅·艾狄胥就曾称,数学上尚未为此类问题提供答案。他并称会替找出答案的人奖赏500元。
目前已经有分布式计算在进行验证。到2005年8月2日,已验证正整数到 6 × 258 = 1,729,382,256,910,270,464,也仍未有找到例外的情况。但是这并不能够证明对於任何大小的数,这猜想都能成立。
有的数学家认为,该猜想任何程度的解决都是现代数学的一大进步,将开辟全新的领域。目前也有部分数学家和数学爱好者,在进行关于“负数的3x+1”、“5x+1”、“7x+1”等種種考拉兹猜想的變化形命題的研究。