CREB
aus Wikipedia, der freien Enzyklopädie
CREB steht für "cAMP response element-binding protein" und ist ein gut untersuchter Transkriptionsfaktor. CREB besitzt eine sogenannte bZIP-Domäne, mit welcher er einen Homodimer bildet d.h. er bindet an sich selbst und formt so eine Gabelstruktur. Diese kann spezifisch an die sogenannte "cAMP response element"-Sequenz (CRE) binden, dies sind spezifische Nukleotid-Sequenzen im Promoter von bestimmten Genen. Die Bindung bewirkt eine verstärkte Transkription dieses Gens. Der Dimer entsteht jedoch erst nach Phosphorylierung von CREB durch eine Proteinkinase. CREB bildet somit einen Endpunkt einer Signaltransduktionskaskade, d.h. eine Zelle kann durch ein Signal von Außen angeregt werden individuelle Gene zu aktivieren. Als erster Weg zur Aktivierung von CREB wurde hierbei die Signaltransduktion über cAMP und Proteinkinase A unter anderem durch den Nobelpreisträger Eric Kandel beschrieben, welcher für CREB namensgebend war. Inzwischen sind weitere Signaltransduktionskaskaden bekannt, welche ebenfalls CREB phosphorylieren, beispielsweise Extracellular-signal Regulated Kinase (ERK).
Die Aktivierung von Genen über CREB ist in der Tierwelt gut konserviert und kommt auch beim Menschen vor. Sehr viele G-Protein gekoppelte Rezeptoren reagieren über CREB, beispielsweise der Glukagon-Rezeptor, welcher die Gluconeogenese steuert. CREB beeinflusst auch die Bildung der Langzeiterinnerung in Nervenzellen.
CREB hat auch Einfluss auf circadiane Uhren in einigen Vertebraten. Mittels CREB kann eine Neusynchronisation über Lichtimpulse erfolgen. Lichtreize werden über das Auge aufgenommen und über den hypothalamischen Trakt zu Neuronen in den Suprachiasmatischen Nuclei (SCN) geleitet. Die Aktionspotentiale werden dort final über Neurotransmitter Glutamat oder PACAP in neurochemische Signale tranformiert und öffnen in den Zellen der SCN Calcium-Kanäle. Der Calcium-Influx aktiviert bestimmte Kinasen, welche CREB phosphorylieren. CREB bindet an die CRE-Box von period1, einem essentiellen Bestandteil des Oszillators und kann durch die neu dazu gewonnenen Phosphatgruppen mit Co-Aktivatoren interagieren. Dies führt zu einer Verstärkung der per1-Expression. Phasenverschiebungen und ergo Neusynchronisation können daraus resultieren.
[Bearbeiten] Siehe auch
[Bearbeiten] Literatur
- Barco A, Bailey CH, Kandel ER: Common molecular mechanisms in explicit and implicit memory. Journal of Neurochemistry 2006, 97: 1520-1533.
- Montminy MR, Gonzalez GA, Yamamoto KK: Regulation of cAMP-inducible genes by CREB. Trends Neurosci. 1990; 13(5):184-8 PMID 1693237
- DD Ginty, JM Kornhauser, MA Thompson, H Bading, KE Mayo, JS Takahashi, and ME Greenberg: Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.