Fock-Raum
aus Wikipedia, der freien Enzyklopädie
Der Fock-Raum dient in der Quantenphysik, insbesondere in der Quantenfeldtheorie, zur mathematischen Beschreibung von Vielteilchensystemen mit variabler Teilchenanzahl. Der Fock-Raum ist nach dem russischen Physiker Wladimir Alexandrowitsch Fock benannt und ist seiner Struktur nach ein quantenmechanischer Hilbertraum. Je nachdem, ob es sich bei den Teilchen um Bosonen oder um Fermionen handelt, spricht man vom 'bosonischen Fockraum' oder vom 'fermionischen Fockraum'.
Mathematisch gesehen ist der bosonische Fock-Raum die symmetrische Tensoralgebra über einem Ein-Teilchen-Hilbertraum
, genauer gesagt deren Vervollständigung bezüglich des Skalarprodukts. Der fermionische Fockraum
ist mathematisch gesehen die Graßmann-Algebra über dem Ein-Teilchen-Hilbertraum, genauer gesagt deren Vervollständigung.
Das geeignet normierte symmetrisierte Tensorprodukt (im bosonischen Fall) bzw. das Keilprodukt (im fermionischen Fall) induzieren Abbildungen
Die Abbildungen werden Erzeugungsoperatoren genannt. Die adjungierten Operatoren
dazu heißen Vernichtungsoperatoren. Für sie gelten die kanonischen (Anti-)Vertauschungsrelationen
für , wobei das obere Vorzeichen (Kommutator) im bosonischen Fall und das untere Vorzeichen (Antikommutator) im fermionischen Fall gilt.
Quantenmechanische Zustände über einem Fock-Raum (also Elemente von vom Betrag 1 bzw. Dichteoperatoren über
, je nach Sichtweise) heißen Fock-Zustände.