New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diskussion:Homotopie - Wikipedia

Diskussion:Homotopie

aus Wikipedia, der freien Enzyklopädie

Was ist S^1? Fuer mich ist es {z in C | |z| = 1}, also schon Teil von R^2.--Gunther 13:40, 25. Feb 2005 (CET)

Ich habe an S^1=[0,2\pi] / \{0\sim 2\pi\} gedacht. Ursprünglich stand da Abb. vom Interval [0,2π] nach R2. Doch wie gesagt ist für Kurven (nicht relative) Homotopie ziemlich trivial, daher meine Änderung. Hast Du eine Idee für ein besseres Beispiel? Man kann es natürlich umformulieren: f,g:S^1\to R^2, f=Id und g=0. --Yonatan 14:22, 25. Feb 2005 (CET)
Ich habe auch schon nachgedacht, wie man das verbessern koennte, denn wenn man S1 als Unterraum von R2 definiert, wird die Trennung zwischen X und Y verunklart. (Andererseits finde ich Teilmengen von R2 extrem anschaulich.) Ein gutes Beispiel (das als "erstes Beispiel" sicherlich ungeeignet ist) waere noch die Kontraktion von R^2\setminus 0 auf S1. Man kann dabei gut erkennen, wozu so eine Homotopie in der Lage ist. Das Torus-Beispiel aus Fundamentalgruppe ist eigentlich auch schoen, erfordert aber entweder raeumliches Vorstellungsvermoegen oder die Faehigkeit, den Bezug zwischen Quadrat und Torus zu verstehen, und das ist beides nicht ganz einfach.--Gunther 14:58, 25. Feb 2005 (CET)
Ok, ich versuch' mal, ob ich das verstaendlich hinbekomme:

Es sei X die Standard-2-Sphäre, also die Menge der Punkte im \mathbb R^3, die vom Ursprung Abstand 1 haben. Y sei die Vereinigung von zwei 2-Sphären, die sich in einem Punkt berühren. f soll jetzt die folgende Abbildung sein: man wählt einen Punkt x0 auf X und einen Großkreis durch ihn. Wenn man X entlang dieses Großkreises einschnürt, bis nur noch der Punkt x0 übrigbleibt, werden aus X zwei kleinere Sphären, die sich in x0 berühren. Indem wir diese mit Y identifizieren, erhalten wir die Abbildung f. (Formal kann man das so fassen: x0 sei der Punkt (1,0,0), und die beiden Sphären, die Y bilden, mögen Durchmesser 1 haben und die x-y-Ebene im Ursprung berühren. Wir betrachten jetzt Schnitte durch X bzw. Y parallel zur x-y-Ebene:

  • Im Abstand 1 zur x-y-Ebene ist der Schnitt mit X bzw. Y jeweils ein Punkt x bzw. y. f bildet x auf y ab.
  • In der x-y-Ebene ist der Schnitt mit X ein Großkreis, der mit Y der Berührpunkt y0 der beiden Sphären. f bildet den Großkreis auf y0 ab.
  • "Dazwischen" ist der Schnitt jeweils ein Kreis, und f ist eine zentrische Streckung in der Schnittebene mit Zentrum auf der z-Achse.

g soll die Abbildung sein, die man erhält, wenn man zuerst f ausführt und dann Y an der x-Achse spiegelt.

Behauptung: f und g sind homotop.

Beweis: Es sei H(x,t) die Abbildung, die zuerst X um den Winkel tπ um die x-Achse dreht und dann mit f auf Y abbildet. Wie man sich leicht überlegt, ist tatsächlich H(x,0) = f(x) und H(x,1) = g(x).

Vielleicht doch zu lang.--Gunther 16:56, 25. Feb 2005 (CET)
Finde ich auch. Vielleicht eher etwas für ein Wikibook... Oder als Erklärung, warum höhere Homotopiegruppen abelsch sind. Ich denke, es spricht nichts gegen ein einfaches Beispiel in R^2, und versuche mal, das exisitierende Beispiel zu bearbeiten. --Yonatan 17:46, 25. Feb 2005 (CET)

Hallo Gunther! Vielen Dank für Deine Änderungen und Ergänzungen zu Homotopieklassen und Relativer Homotopie. Ist jetzt viel besser strukturiert. --Yonatan 14:22, 25. Feb 2005 (CET)

[Bearbeiten] Kurve oder Weg

Ich denke, beide Begriffe sind ähnlich verbreitet und geläufig. Gibt es irgendwo eine Diskussion, welcher auf Wikipedia verwendet werden soll? --Yonatan 14:31, 25. Feb 2005 (CET)

siehe Kurve (Mathematik) und Weg (Mathematik). "Kurve" ist ohnehin ziemlich ueberlastet (Riemannsche Flaechen sind ja auch Kurven), und "Weg" passt auch besser zu "wegzusammenhaengend". Mit "Pfad" konnte ich mich nie so richtig anfreunden, das ist wahrscheinlich aus dem Englischen uebernommen.--Gunther 14:45, 25. Feb 2005 (CET)
OK, bin überzeugt. Mit „Pfad“ sehe ich es genauso. Klingt irgendwie nach Winnetou... --Yonatan 15:06, 25. Feb 2005 (CET)

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu