Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Diskussion:Loxodrome - Wikipedia

Diskussion:Loxodrome

aus Wikipedia, der freien Enzyklopädie

Inhaltsverzeichnis

[Bearbeiten] Fehler?

Was ist atan? (\eta = atan( \frac {\lambda_B - \lambda_A} {q} ) ) Ist arctan gemeint?

ja es war arctan gemeint. Fehler ist behoben. --Langläufer 09:22, 12. Mär. 2007 (CET)

[Bearbeiten] Großkreis

"Die Loxodrome ist ein Teilstück eines Großkreises, wenn der Schnittwinkel ... oder 90° beträgt. "--- Wahrscheinlich bin ich wieder mal zu dusslig, etwas ganz Triviales zu verstehen. Aber wodurch ist denn der Fall eines Breitenparallels ausgeschlossen bei 90° Schnittwinkel mit den Meridianen? Breitenparallel sind i. a. keine Großkreise. --192.53.103.105 16:31, 2. Sep 2005 (CEST)

Die Loxodrome ist kein Großkreis. - Ein Breitenkreise sind Loxodromen. --Langläufer 09:24, 12. Mär. 2007 (CET)

[Bearbeiten] Aufdringliches, animiertes GIF

Ich erlaube mir mal, diese absolut unmögliche Animation zu entfernen, die es unmöglich macht, den (eigentlich wichtigen) Text zu lesen. Will Wikipedia eine Enzyklopädie sein oder ein Spielplatz? --Cmenke 14:12, 25. Jan 2006 (CET)

Gerade diese Animation empfand ich beim ersten Betrachten des Artikels als Highlight. Avior 21:16, 26. Mai 2006 (CEST)
Ich finds grausam! Kann man das als Kompromiss vielleicht viel langsamer machen? --84.152.8.9 10:34, 27. Mai 2006 (CEST)

[Bearbeiten] Überarbeitung

Nachdem der Einwand von 192.53.103.105 vom 2. Sep 2005 (CEST) nun endlich bereinigt ist, ist immer noch eine Überarbeitumng nötig, aus folgendem Grund:

"Die Loxodrome (griech. „schiefer Weg“) ist eine Kurve auf einer Kugeloberfläche, die immer unter dem gleichen Winkel die Meridiane schneidet." --- Auf einer Kugel oder Kugeloberfläche gibt es gar nicht von sich aus Meridiane; das setzt voraus, 2 geeignete Punkte als Pole auszuzeichnen. --888344

Ich habe den Überarbeitungshinweis wieder entfernt. Der hinzugefügte Hinweis zum Geographischen Koordinatensystem sollte ausreichen. Zudem wurden die passenden Berechnungsformeln eingefügt --Roterraecher 16:40, 18. Jun 2006 (CEST)

[Bearbeiten] Missing Link

Unter dem Link http://www.math.unibas.ch/~walser/Miniaturen/23%20Sphaerische%20Spiralen.pdf wirtd kein Dokument gefunden.--11000edits 20:01, 22. Jun 2006 (CEST)

nach Rückfrage auf Wikipedia:Fragen zur Wikipedia nehme ich den toten Link jetzt raus--11000edits 20:36, 22. Jun 2006 (CEST)

[Bearbeiten] Formelfehler beim Kurswinkel?

Kenne mich hier nicht wirklich aus, habe nur gerade gemerkt, dass es in der Formel des Kurswinkels Pi/4 und nicht Pi/2 heißen muss. so stehts zumindest im Bronstein (Tashenbuch der Mathematik). Vielleicht will das ja jemand ändern.

Nein, die Formeln sind korrekt. Steht so in zwei Büchern (Kern/Rung 1986, Hammer 1916) --Roterraecher 23:01, 8. Jul 2006 (CEST)
Ich denke die Formeln im Bronstein sind vorzuziehen, ich habe die Ergebnisse empirisch überprüft. In der Formel des Kurswinkels müssen die Summanden Pi/4 sein, damit sinnvolle Ergebnisse herauskommen, die auf kleinen Distanzen denen der Orthodromen entsprechen. Das ist zwar kein Bewis, aber für einen Beweis oder eine Herleitung fehlen mir die näheren Kenntnisse. Auch die Formel für die Streckenlänge konnte ich nicht verifizieren. Nach stöbern im Netz habe ich für die Streckenlänge die folgende Fromel gefunden. -- Lion
   D_Länge  := Länge_A -  Länge_B,
   D_Breite := Breite_A - Breite_B,
   f := D_Breite / ln( tan ... / tan ... )
 Streckenlänge = sqrt(D_Breite*D_Breite + D_Länge*D_Länge*f*f )

[Bearbeiten] Berechnung

Ich habe den Abschnitt Berechnung etwas überarbeitet. Die neue Darstellung beinhaltet eine Herleitung der Formel für den Richtungswinkel, worin ich eine Verbesserung sehe. Die Korrektheit der Formel wurde durch Implementation verifiziert.

Eine Herleitung bzw. Quellenangabe zur Formel der Kurvenlänge steht noch aus. WolfgangRieger 12:46, 8. Mär. 2007 (CET)

[Bearbeiten] Abbildung Loxodrome/Orthodrome

Bei der Abbildung, die Loxodrome und Orthodrome gegenüberstellt, scheint es sich um eine Plattkarte zu handeln. Da diese Projektion nicht winkeltreu ist, wird die Loxodrome bei einer solchen jedoch nicht auf eine Gerade abgebildet. Dies wäre bei der Mercatorkarte der Fall, in der die Abstände der Breitengrade gemäß ln(tan(phi)+1/cos(phi)) mit steigender Entfernung zum Äquator zunehmen. -- (unsignierter Beitrag von IP)

du hast recht, es ist eine Plattkarte, die Loxodrome sollte nicht gerade sein. --Langläufer 09:21, 12. Mär. 2007 (CET)

Wenn das jemand ändern kann und will: Darüber hinaus wäre m.E. eine doppelte Darstellung noch informativer, untereinander einmal auf Mercator und einmal auf gnomonischer Projektion. Die Abbildung wird nämlich auch vom Artikel Orthodrome benutzt, und so wäre auch anschaulich klar, dass die Form der Krümmung in erster Linie an der Projektion liegt. --84.161.138.73 02:58, 27. Mär. 2007 (CEST)

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu