Diskussion:Primzahlzwilling
aus Wikipedia, der freien Enzyklopädie
Die Summe der Kehrwerte der Primzahlen ist divergent, jedoch die Summe der Kehrwerte der Primzahlzwillinge ist konvergent und konnte sogar bereits berechnet werden (sic!).
Wenn das stimmt, kann dann nicht aus der Summe der Kehrwerte der Primzahlzwillinge geschlossen werden, ob es unendlich viele oder endlich viele gibt? Wenn es endlich viele gäbe, würde man durch Addieren diesen Wert erreichen und hätte eine endliche Abbruchbedingung.
???
Oder ist das ein Trugschluss? --Hutschi
- Richtig, man kann nichts über die Endlichkeit der Anzahl der Primzahlzwillinge sagen. Anders wäre es, wenn die Reihe über die Kehrwerte einen irrationalen Grenzwert hätte - der könnte nicht von endlich vielen Primzahlzwillingen erzeugt werden (umgekehrt kann aber eine unendliche Reihe einen rationalen Granzwert haben). Da aber noch immer nicht bekannt ist, ob es unendlich viele gibt, wird wohl auch diese Eigenschaft des Grenzwertes unbekannt oder der Grenzwert rational sein. Interessante Frage: Konnte der Grenzwert genau berechnet werden oder nur eine Näherung des Grenzwertes (z.B. auf einige Nachkommastellen genau)? --SirJective 16:16, 25. Mär 2004 (CET)
- Aha, siehe en:Brun's constant - es gibt nur eine Schätzung des Grenzwertes. --SirJective 16:18, 25. Mär 2004 (CET)
Das glaube ich eher. --Hutschi 16:41, 25. Mär 2004 (CET)
Als Quelle für den "Beweis" wird angegeben:
Werner Guddat INS JENSEITS UND ZURÜCK Utopisch-Historischer Roman Man könnte meinen, der Autor habe über die in seinem Roman auftauchende Atlanterin Mandra tatsächlich Kontakt zum „Großen Gehirn“ vom Planeten Balut gehabt. Er enthält eine Fülle von neuen Gedanken und Hypothesen in bezug auf Lichtgeschwindigkeit, Relativitätstheorie, Gravitation, den Antrieb von UFOs, die Messung von großen Entfernungen im Weltraum, die Geschichte der Erde und den Untergang von Atlantis. Vor allem aber legt der Autor den mathematischen Beweis für die Existenz unendlich vieler Primzahlzwillinge vor, nach dem irdische Mathematiker schon lange vergeblich suchen und den er daher nicht aus irdischen Quellen geschöpft haben kann. Die einzelnen Ebenen des Romans sind geschickt miteinander verflochten. Sowohl Leser von Zukunftsromanen als auch Liebhaber von wissenschaftlichen Gedankenspielen werden sich angesprochen fühlen. (160 S., DIN A5, Br.), Preis: 5,00 €
http://www.amun-verlag.de/kat_seitrest/jenseits.html Weitere Stellen zu dem Beweis habe ich nicht gefunden. ??? --Hutschi 15:03, 6. Apr 2004 (CEST)
Werner Guddat lieferte den Beweis, dass es doch unendlich viele Primzahlzwillinge gibt. Beweis im Anschluß:
Es gibt unendlich viele Primzahlzwillinge
Betrachtet man die Primzahlen als Wellen mit dem Startpunkt 3 auf dem Strahl der ungeraden Zahlen, läßt die Primzahlwelle P3 bei ihrem Durchlauf Zwischenräume mit jeweils zwei Leerstellen 00 unberührt.
Die Primzahlwellen P 3 und P5 bilden mit ihren Kombinationsmöglichkeiten den Grundzyklus, der bis 31 reicht. Er enthält in den von der Primzahlwelle P3 unberührten Zwischenräumen noch keinen Zwischenraum ohne Leerstelle (A(alt)=0),zwei Zwischenräume mit jeweils einer Leerstelle (B(alt)=2) und drei Zwischenräume mit Zwillingsleerstellen 00 (C(alt)=3). Der Grundzyklus mit seinen drei Zwillingsleerstellen wiederholt sich ab 33 unendlich oft und bildet so eine unendliche Reihe von Zwillingsleerstellen 00.
Jede weitere Primzahl P(neu) erhöht die Anzahl der möglichen Wellenkombinationen und ergibt einen neuen Wellenzyklus, der sich ebenfalls unendlich oft wiederholt, wobei in den "toten Zonen" am Anfang aller Wiederholungen von Wellenzyklen weder Primzahlen noch Prinzahlzwillinge stehen können.
Alle größeren Prinzahlzwillinge sind Vielfache von 30 plus eines der drei ungeraden Zahlenpaare 11/13, 17/19 oder 29/31.
Die Anzahl der Durchläufe der Primzahlwelle P(neu) durch ihren Wellenzyklus P(neu) ist gleich der Anzahl der Elemente im Wellenzyklus P(alt). Die Primzahlwelle P(neu) durchläuft alle Elemente des Wellenzyklus P(alt) einmal, wobei die durchlaufenen Elemente selbst systematisch über alle P(neu) Wellenzyklen P(alt) verteilt sind, aus denen der vollständige Wellenzyklus P(neu) besteht.
Somit entwickeln sich die für den Grundzyklus festgestellten Werte für A(alt) = 0, B(alt) = 2 und C(alt) = 3 bei der Betrachtung von Primzahl zu Primzahl nach folgenden Formeln weiter:
A(neu) = A(alt) x P(neu) + B(alt) B(neu) = B(alt) x P(neu) - B(alt) + 2C(alt) C(neu) = C(alt) x P(neu) - 2C(alt)
Durch sie wird der neue Sachverhalt für den vollständigen Wellenzyklus der Primzahlwelle P7 mit A(neu) = 2, B(neu) = 18 und C(neu) = 15 richtig wiedergegeben. Für den vollständigen Wellenzyklus der Primzahlwelle P 11 ergeben sich beim Weiterrechnen für A(neu) = 40, B(neu) = 210 und C(neu) = 135.
So kann man bis unendlich eine Primzahlwelle nach der anderen in die Rechnung einbeziehen. Da die Anzahl der Zwillingsleerstellen (C) in den vollständigen Wellenzyklen aller Primzahlen P(neu) bis unendlich ständig größer wird und ihre immer mehr ausgedünnte Reihe über die Spannen zwischen 3P(alt) und 3P(neu) in die Spannen zwischen P(neu) und 3P(neu) hineinwandert und dort zu Primzahlzwillingen wird, ist die Existenz von Primzahlzwillingen bis in die Unendlichkeit sichergestellt. Außerdem müssen wegen der immer zahlreicher und immer länger werdenden "toten Zonen" im Prinzip in der ersten Durchlaufspanne aller Primzahlwellen überdurchschnittlich viele Zwilligsleerstellen auftreten.
Werner Guddat, Weserstr. 58, D 27804 Berne --
Verschoben wegen starker Zweifel. --Hutschi 15:09, 6. Apr 2004 (CEST)
Wie ist das eigentlich mit Primzahlendrillingen oder mehr? Also 3, 5, 7 oder so? Gibt es davon noch mehr? Es gibt keinen Artikel dazu.
Antwort: Da je drei aufeinanderfolgende ungerade Zahlen ein Vielfaches von 3 enthalten, ist 3-5-7 der einzige Primzahldrilling. Das gibt wohl keinen Artikel her. :-) (uli-g)
- Es gibt jedoch mehrere Primzahlgruppen der Form p, p+2, p+6 oder der Form p, p+4, p+6. Die nennt man manchmal auch Primzahldrillinge.
- Ebenso nennt man manchmal Primzahlgruppen der Form p, p+2, p+6, p+8 Primzahlvierlinge.
- Wieviele es von denen gibt, ist genauso ungeklaert, wie die Frage, wieviele Primzahlzwillinge es gibt. --SirJective 17:39, 12. Mai 2004 (CEST)
Inhaltsverzeichnis |
[Bearbeiten] Beweis oo viele Primzahlzwilinge
Hat den schon wer verstanden :). Ist der fehlerfrei ? Jedenfalls ist das ein lichtblick in diesen unangenehmen zeiten.
[Bearbeiten] Beweis oo viele Primzahlzwillinge
Der neue beweis vom maerz ist wieder falsch :(. Der fehler steckt in lemma 8. Dunkel sind die zeiten und jetzt regnet es noch ...
[Bearbeiten] Nicht nur durch 9 teilbar, sondern Auch Quadratzahl??
In dem Artikel steht, das für alle Primzahlzwillinge p und p+2 (mit p>3) gilt, das (p*p+2)+1 durch 9 teilbar ist. Ich habe, bis jetzt bis zum Paar [71 73] getestet, und festgestellt, das alle, bis dahin getesteten Primzahlzwillinge mit der Formel (p*(p+2))+1 Quadratzahlen zurückliefern, und zwar solche, deren Quadratwurzel eine durch 6 teilbare Zahl zurückliefern. Ich nehme an, das dies auch bei allen weiteren Primzahlzwillingen so ist. Wer kann das bestätigen? Wer weiß, wo ein Beweis dafür zu finden ist, und wo?
p p+2 (p*(p+2)+1 sqrt((p*(p+2)+1) ----------------------------------- 5 7 36 6 11 13 144 12 17 19 324 18 29 31 900 30 41 43 1764 42 59 61 3600 60 71 73 5184 72
Da fällt mir gerade etwas ein: es reicht zu zeigen, das das Produkt von (n*(n+2))+1 eine Quadratzahl ergibt, unabhängig davon, ob n und n+2 Primzahlen sind, oder nicht, solange beide Zahlen nicht durch 3 teilbar sind. --Arbol01 19:12, 8. Aug 2004 (CEST)
- Dass n*(n+2)+1 = n^2 + 2n + 1 = (n+1)^2 ist, ist dir schon aufgefallen, oder? ;-)
- Und wenn weder n noch n+2 durch 3 teilbar ist, muss notwendig n+1 durch 3 teilbar sein. --SirJective 19:35, 8. Aug 2004 (CEST)
-
- Mir ist etwas anderes eingefallen (kurz nachdem ich meinen Abschnitt geschrieben hatte):
- (n − 1) * (n + 1) = n2 − 1 und demzufolge ist ((n − 1) * (n + 1)) + 1 = n2. Und da n-1 und n+1 genau um zwei differieren. deshalb gilt p = n-1 und p+2 = n+1. Demzufolge muß (p*(p+2))+1 eine Quadratzahl ergeben. --Arbol01 21:50, 8. Aug 2004 (CEST)
-
- Mir ist auch klar, das von 3 aufeinander folgenden Zahlen, genau eine durch 3 teilbat sein muß.--Arbol01 21:50, 8. Aug 2004 (CEST)
- Ich wollte dich übrigens mit meiner Antwort nicht beleidigen oder ähnliches, war nur selbst überrascht von der Einfachheit der Argumentation. --SirJective 04:14, 7. Okt 2004 (CEST)
-
- Wow, fast 30 Tage Differenz. Nein, ich habe mich nicht beleidigt gefühlt. --Arbol01 12:53, 7. Okt 2004 (CEST)
[Bearbeiten] Botrugno
Den Satz Interssant ist eine Entdeckung, die Roberto Botrugno im Jahr 2000 gemacht hat, nämlich dass die Existenz von unendlich vielen Primzahlen direkt davon abhängt, dass Erdös Vermutung falsch ist. habe ich auch hier entfernt. Diskussion siehe Diskussion:Erdös Vermutung#Korrekturen. Wuzel 10:41, 14. Feb 2005 (CET)