Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Uran-Anreicherung - Wikipedia

Uran-Anreicherung

aus Wikipedia, der freien Enzyklopädie

Unter dem Begriff Anreicherung fasst man physikalische und chemische Methoden zusammen, die den Anteil eines bestimmten Isotopes in einem Isotopengemisch erhöhen. Die Anreicherung findet vor allem im Zusammenhang mit Kernspaltung und Kernfusion Anwendung, also für Kernreaktoren und Kernwaffen.

Die chemischen Eigenschaften von Isotopen sind fast identisch, so dass bei der Anreicherung praktisch ausschließlich physikalische Methoden zum Einsatz kommen.

Inhaltsverzeichnis

[Bearbeiten] Urananreicherung

Das wichtigste und wahrscheinlich einzige schwere Element, für das Isotopentrennung im industriellen Maßstab durchgeführt wird, ist das Uran. Natururan besteht zu etwa 99,3% aus 238U und zu 0,7% aus 235U. Für die Spaltung in Kernreaktoren und Kernwaffen wird 235U benötigt. Kernreaktoren werden meistens mit Uran beschickt, das eine Anreicherung von 3 bis 5% 235U hat. In Schwerwasser- und Graphit-moderierten Reaktoren kann auch Natururan zum Einsatz kommen. Für Kernwaffen ist eine sehr hohe Anreicherung erforderlich (typischerweise mindestens 90%), dieses Urangemisch wird auch als HEU (Highly Enriched Uranium) bezeichnet. Die von einer Trenneinrichtung verrichtete Arbeit wird in kg Urantrennarbeit (kg UTA) bzw. Tonnen Urantrennarbeit (t UTA) ausgedrückt. In der englischen Fachliteratur wird statt kg UTA die Einheit SWU (Separation Work Unit) verwendet. Eine große Anlage besitzt eine Jahreskapazität in der Größenordnung einiger 1000 t UTA. Die gängigen industriellen Verfahren setzen als Verfahrenensmedium Uranhexafluorid (UF6) ein, die einzige chemische Verbindung des Urans, die bei Raumtemperatur eine ausreichende Flüchtigkeit besitzt (etwa 100 mbar Dampfdruck bei Raumtemperatur).

Als Abfallprodukt der Urananreicherung entsteht abgereichertes Uran ("Tails") mit einem 235U-Gehalt von ca. 0,3%, das unter anderem in Ausgleichsgewichten für Flugzeugtragflächen und Uranmunition verwendet wird.

Um das Uran zur Energiegewinnung einsetzen zu können, muss bei den gängigsten Reaktortypen, den Druckwasserreaktoren und Siedewasserreaktoren, der Anteil des 235U erhöht werden. In einer Urananreicherungsanlage wird das eingespeiste (Natur-)Uran in zwei Fraktionen getrennt, von denen die eine einen gegenüber dem Ausgangsstoff höheren, die andere einen niedrigeren Anteil an 235U besitzt.

Den größten Anteil an der weltweit installierten Gesamtanreicherungskapazität haben immer noch die Diffusionsanlagen. Der Produktionsanteil der Zentrifugenanlagen steigt jedoch in zunehmendem Maße aufgrund der technischen Dominanz der fortschrittlichen Gaszentrifugen. In Frankreich soll demnächst die bestehende Gasdiffusionsanlage durch eine moderne Zentrifugenanlage (George Besse II) ersetzt werden. Zwei neue Zentrifugenanlagen sind in den USA geplant.

Die Laseranreicherung, in deren Entwicklung erhebliche Mittel investiert wurden, konnte die in sie gesteckten Erwartungen nicht erfüllen. Die meisten Länder haben sich aus dieser Technologie inzwischen zurückgezogen oder den Forschungsaufwand zumindest deutlich reduziert.

Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten bestehenden Anlagen (mit Kapazitäten über 100 t UTA/a):

Land Anlage Betreiber Verfahren t UTA/Jahr
China Lanchow CNNC Diffusion ca. 700
China Hanchong CNNC Zentrifuge 200
Deutschland Gronau (Westf.) Urenco Zentrifuge 1.720
Frankreich Tricastin Eurodif Diffusion 10.800
Großbritannien Capenhurst Urenco Zentrifuge 2.750
Japan Rokkasho-mura JNFL Zentrifuge 1.050
Niederlande Almelo Urenco Zentrifuge 2.150
Russland Jekaterinburg Techsnabexport Zentrifuge 10.000
Russland Krasnojarsk Andrej Rosenskow Zentrifuge 2.500
Russland Rostow am Don Techsnabexport Zentrifuge 1.400
Russland Angarsk Techsnabexport Zentrifuge 1.400
Russland Tomsk Techsnabexport Zentrifuge 5.700
USA Paducah USEC Gasdiffusion 11.300

[Bearbeiten] Diffusionsmethoden

Bei der Gasdiffusionsmethode lässt man gasförmiges Uran in Form des von Uranhexafluorid (UF6) durch eine poröse Membran diffundieren. Die treibende Kraft hierbei ist der Druckunterschied auf beiden Seiten der Membran. Moleküle, die 235U enthalten, sind leichter als die 238U-enthaltenden und diffundieren schneller. Bei einem Uranisotopengemisch enthält daher der Gasstrom, der durch die Poren in der Wand hindurch diffundiert ("Product"), einen geringfügig höheren Anteil des Isotops U-235 als der ursprüngliche Strom ("Feed"). Eine einzelne Trennstufe hat einen geringen Trennfaktor (Konzentrationsverhältnis des U-235 in Product und Tails) von maximal 1,004, aber einen hohen Materialdurchsatz. Für einen Anreicherungsgrad, der zum Betrieb von Leichtwasserreaktoren genügt, sind rund 1200 hintereinander geschaltete Stufen erforderlich, die zusammen eine so genannte "Kaskade" bilden. Der Energieverbrauch ist hoch und beträgt etwa 2300 – 2500 kWh pro kg Urantrennarbeit (UTA).

Anstelle des Druckunterschiedes kann auch ein Temperaturgefälle zur Isotopentrennung mittels Diffusion ausgenutzt werden. Bei der thermischen Diffusionsmethode (Thermodiffusion) wird ein Gas oder eine Flüssigkeit in einem engen Raumbereich zwischen zwei vertikalen Platten von einer dieser Platten erhitzt und von der anderen gekühlt. Moleküle, die das leichtere Isotop enthalten, diffundieren bevorzugt zur wärmeren Platte, die anderen zur kälteren Platte. Darüber hinaus bildet sich an der wärmeren Platte eine leichte aufwärtsgerichtete Konvektion, so dass sich im oberen Bereich der Zelle die Moleküle mit den leichteren Isotopen konzentrieren, und im unteren Bereich die schwereren. Praktisch verwendet man statt Platten eher konzentrische Rohre (Trennrohr nach Clusius und Dickel).

siehe auch: Gasdiffusionsverfahren

[Bearbeiten] Anreicherung durch Gaszentrifugen

Das Gaszentrifugenverfahren ist im internationalen Bereich heute das gängigere Verfahren zur Urananreicherung und hat die Gasdiffusion hinsichtlich der Bedeutung inzwischen überholt. Die wichtigsten Gründe dafür sind der erheblich geringere Energieverbrauch (rund 50 kWh Trennarbeit pro kg UTA. Zum Vergleich: Diffusionstrennung bis 2500 kWh Trennarbeit pro kg UTA) sowie die größere Flexibilität hinsichtlich der Kapazitätsplanung.

Dazu wird gasförmiges Uranhexafluorid (UF6) in das Innere eines schnell rotierenden Zylinders geleitet. Unter dem Einfluss der hohen Geschwindigkeit und der dadurch bedingten massenabhängigen Zentrifugalkräfte sammeln sich die schwereren 238UF6-Moleküle im äußeren Bereich des zylindrischen Rotors und die leichteren 235UF6-Moleküle weiter innen. Dadurch kommt es zu einer Entmischung der Isotope. Uranhexafluorid ist auch deshalb so gut für den Anreicherungsprozess geeignet, weil Fluor selbst nur aus einem Isotopen besteht; alle Fluor-Atome haben also genau die gleiche Masse, sodass die Masse der UF6-Moleküle einzig durch die unterschiedliche Masse des jeweiligen Uran-Atoms variieren kann. Darüber hinaus ist das Fluoratom klein, was für den rel. Dichteunterschied vorteilhaft ist:

1 - \frac{6 \cdot 19 + 235}{6m \cdot 19 + 238} \approx 0,008523 \approx 0,85 %

Dieser Effekt wird noch verstärkt, indem man (z. B. durch Anlegen einer Temperaturdifferenz zwischen Boden und Deckel) im Innern der Zentrifuge eine axiale Umlaufströmung anregt. Der größte Konzentrationsunterschied besteht dann nicht mehr zwischen Achse und Rotorwand, sondern zwischen den Enden der Zentrifuge. Dort werden folglich auch die angereicherte Fraktion („Product“) und die abgereicherte Fraktion („Tails“) entnommen. Eine solche Zentrifuge wird auch als Gegenstromzentrifuge bezeichnet. Die Entnahmeröhrchen für die an- und abgereicherte Fraktion ragen in den Bereich des rotierenden Gases an der Außenwand der Zentrifuge und nutzen so den Staudruck zum Transport des Gases innerhalb der Anlage. Auch beim Zentrifugenverfahren erfolgt der Trennprozess im Vakuum, daher müssen "Produkt" und "Tails" mit Hilfe von Verdichtern und Sublimatoren/Desublimatoren auf Normaldruck erhöht werden bevor sie in die Transport- oder Lagerbehälter abgefüllt werden können.

Die Effektivität der Zentrifugen kann durch Vergrößerung der Rohrlänge und insbesondere der Umlaufgeschwindigkeit gesteigert werden, sie besitzen deshalb eine längliche, walzenartige Form. Mit Aluminiumlegierungen werden 400 m/s, mit hochfesten Stählen 500 m/s und mit faserverstärkten Werkstoffen über 700 m/s erreicht. Die Trennleistung wird durch die Materialeigenschaften des schnell umlaufenden Rotors sowie durch technisch bedingte Einschränkungen der Rotorlänge (Auftreten von unerwünschten Eigenschwingungen) praktisch begrenzt.

[Bearbeiten] Elektromagnetische Anreicherung

Wie in einem Massenspektrometer werden bei der elektromagnetischen Isotopen-Trennung Uranatome zunächst ionisiert, dann in einem elektrischen Feld beschleunigt und anschließend in einem magnetischen Feld nach der Massenzahl getrennt. Dieser Aufbau zur Isotopentrennung wird auch Calutron genannt.

Dieses Verfahren ist aber keine Anreicherung im Sinne der Definition, da man nur einzelne Atome gewinnt. Eine Anreicherung im Gramm- oder sogar Kilogramm-Bereich kann man aber nicht erzielen. Es wird daher hauptsächlich in der Forschung eingesetzt, da sich im Idealfall bereits ein gewonnenes Atom eines Isotops detektieren lässt.

[Bearbeiten] Laser-Anreicherung

Die Laseranreicherung beruht auf der Isotopieverschiebung der Absorptionsspektren von Atomen und Molekülen. Sind die spektroskopischen Bedingungen geeignet, d. h. überlappen die Absorptionslinien der Isotope oder Isotopenverbindungen hinreichend wenig und steht außerdem ein Laser geeigneter Wellenlänge und Schmalbandigkeit zur Verfügung, so ist eine isotopenselektive Anregung möglich. Für die Trennung wird dann ausgenutzt, dass sich die angeregte Spezies von der nicht angeregten in ihren physikalischen und chemischen Eigenschaften wesentlich unterscheidet. Laserverfahren zeichnen sich durch eine hohe Selektivität aus.

Grundsätzlich lassen sich zwei Konzepte unterscheiden: die Photoionisation von Urandampf (atomares Verfahren; AVLIS) und die Photodissoziation von UF6 (molekulares Verfahren; MLIS). Theoretisch erlaubt das Laserverfahren eine Isotopentrennung in einem einzigen Schritt. Praktisch hängt die Zahl der erforderlichen Stufen davon ab, inwieweit sich die idealen Verhältnisse realisieren lassen.

Beim atomaren Verfahren werden die Atome eines Isotopengemisches selektiv ionisiert. Nach der Ionisation eines Isotops (235U) kann es leicht von den nicht ionisierten Atomen des anderen Isotops (238U) durch Beschleunigung in einem elektrischen Feld getrennt werden.

Beim molekularen Verfahren wird das 235U enthaltende Molekül zunächst durch einen ersten Laser angeregt, bevor durch einen zweiten Laser ein Fluor-Atom abgespalten wird. Das entstehende feste 235UF5 kann leicht aus dem Gas gefiltert werden.

Nach anfänglicher Euphorie über die Vorteile dieser Verfahren gegenüber herkömmlichen, etablierten Anreicherungsverfahren ist man inzwischen wieder skeptischer geworden hinsichtlich der industriellen Realisierbarkeit. Viele Forschungs- und Entwicklungsprogramme wurden bereits wieder eingestellt, da es sich zeigte, dass die technischen Probleme (Korrosion an den Apparaturen) so unüberwindbar sind, dass auch Hochtechnologie-Länder daran scheiterten.

[Bearbeiten] Trenndüsenverfahren

In Deutschland wurde bis Ende der 1980er Jahre auch das Trenndüsenverfahren entwickelt. Hier erfolgt die Entmischung der Uranisotope aufgrund unterschiedlicher Zentrifugalkräfte in einer schnellen, gekrümmten Strömung. 1975 wurde von Brasilien im Rahmen der deutsch-brasilianischen Kernenergievereinbarung dieses Verfahren übernommen, um seine großen Uranvorkommen zu verarbeiten; die geplanten Anlagen wurden jedoch nicht realisiert. Als Vorteil des Trenndüsenverfahrens kam hier u. a. zum tragen, dass es keinen Geheimhaltungsbeschränkungen unterlag. Andere Länder sahen das Trenndüsenverfahren für die Urananreicherung nicht vor, da der Energieverbrauch zu hoch war.

[Bearbeiten] Bedeutung der Anreicherung für den Bau von Kernwaffen

Anreicherung von 235U ist keine Voraussetzung für den Bau von Kernwaffen. Das in einem mit Natururan betriebenen Graphit- oder Schwerwasser(D2O)-moderierten Reaktor durch Neutroneneinfang von 238U entstehende Plutonium ist ebenfalls waffentauglich, es ermöglicht jedoch nur den Bau vergleichsweise schwacher Kernladungen, ist radioaktiv, giftig und schwer handhabbar. Das 239Pu muss lediglich durch Wiederaufarbeitung von weiteren entstehenden Zerfallsprodukten getrennt werden: das in einem solchen Reaktor gewonnene Plutonium kann auf rein chemischem Wege von den übrigen Spaltstoffen abgetrennt werden, siehe dazu auch Plutoniumbombe. Kernreaktoren, die hauptsächlich das waffenfähige 239Pu erzeugen, besitzen ein sehr einfaches Design, eignen sich deswegen schlechter zur Stromerzeugung, sind unsicher und überdies für jeden Fachmann klar als für diesen Zweck gebaut erkennbar.

Der Bau und der Betrieb einer Anreicherungsanlage erfordert ein wesentlich höheres technologisches Niveau als der Bau eines einfachen Kernreaktors zum Erbrüten von Plutonium.

Auch lässt sich der Bau einer großen Anreicherungsanlage mit Tausenden von Zentrifugen zur Herstellung von hoch angereichertem kernwaffentauglichem 235U kaum besser verheimlichen als der Bau eines Kernreaktors.

Das militärische Motiv der Urananreicherung besteht darin, dass man mit hoch angereichertem 235U stärkere Kernladungen bauen kann, die überdies besser handhabbar und lagerfähig sind.

Im August 2005 blickte die Weltöffentlichkeit auf den Iran und die umstrittene Wiederinbetriebnahme dessen Atomkomplexes in Isfahan. Dort wird die Urananreicherung in vergleichsweise geringem Umfang betrieben, der erreichte Anreicherungsgrad ist weit von der Bombentauglichkeit entfernt. Der Iran reklamiert jedoch sein Recht zur Anreicherung zu zivilen Zwecken: ein Kernreaktor erfordert einen sehr viel geringeren Anreicherungsgrad als eine Bombe. Die Beherrschung der Gaszentrifugen-Technologie zur Anreicherung stellt jedoch eine wesentliche Schwelle auf dem Weg zur Atommacht dar, da die Skalierung hin zu größeren Mengen und Anreicherungsgraden lediglich eine Frage der technischen Ressourcen ist.

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu