Bicycle frame
From Wikipedia, the free encyclopedia
|
A bicycle frame is the main component of a bicycle, onto which wheels and other components are fitted. The modern and most common frame design for an upright bicycle is based on the safety bicycle, and is made of two triangles, a main triangle and a paired rear triangle. This is known as the diamond frame. The main triangle consists of the head tube, top tube, down tube and seat tube. The rear triangle consists of the seat tube, and paired chain stays and seat stays. The head tube contains the headset, the interface with the fork. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket shell. The rear triangle connects to the rear dropouts, where the rear wheel is attached. It consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropouts. The seat stays connect the top of the seat tube (often at or near the same point as the top tube) to the rear dropouts.
Unless otherwise specified, the remainder of this article focuses primarily on the diamond frame.
[edit] Frame tubes
The diamond frame consists of two triangles, a main triangle and a paired rear triangle. The main triangle consists of the head tube, top tube, down tube and seat tube. The rear triangle consists of the seat tube, and paired chain stays and seat stays.
[edit] Head tube
The head tube contains the headset, the interface with the fork. In an integrated threadless headset, the bearings interface directly with the metal surface on the inside of the head tube.
[edit] Top tube
The top tube connects the head tube to the seat tube at the top. In a mountain bike frame, the top tube is almost always sloped. In a traditional-geometry racing bicycle frame, the top tube is horizontal. In a compact-geometry frame, the top tube is sloped. See Road and triathlon bicycles for more information on geometries.
Control cables are routed along mounts on the top tube, or sometimes inside the top tube. Most commonly, this includes the cable for the rear brake, but some mountain bikes and hybrid bicycle also route the front and rear derailleur cables along the top tube.
The space between the top tube and the rider's groin while straddling the bike and standing on the ground is called clearance. The total height from the ground to this point is called the height lever.
[edit] Down tube
The down tube connects the head tube to the bottom bracket shell. On racing bicycles and some mountain and hybrid bikes, the derailleur cables run along the down tube, or inside the down tube. On older racing bicycles, the shift levers were mounted on the down tube. On newer ones, they are integrated with the brake levers on the handlebars.
Bottle cage mounts are also on the down tube, usually on the top side, sometimes also on the bottom side. In addition to bottle cages, small air pumps may be fitted to these mounts as well.
[edit] Seat tube
The seat tube contains the seatpost of the bike, which connects to the saddle. The saddle height is adjustable by changing how far the seatpost is inserted into the seat tube. On some bikes, this is achieved using a quick release lever. The seatpost must be inserted at least a certain length; this is marked with a minimum insertion mark.
The seat tube also may have braze-ons for mounting a bottle cage or front derailleur.
[edit] Chain stays
The chain stays run parallel to the chain, connecting the bottom bracket shell to the rear dropouts. When the rear derailleur cable is routed partially along the down tube, it is also routed along the chain stay. Occasionally (principally on frames made in the late 1990s) mountings for disc brakes will be attached to the chain stays. There may be a small brace that connect the chain stays in front of the rear wheel and behind the bottom bracket shell.
Chain stays can be straight or tapered tubes. Sometimes, on higher-end bikes, they are sculpted to allow clearance for the rear wheel and crank arms.
[edit] Seat stays
The seat stays connect the top of the seat tube (often at or near the same point as the top tube) to the rear dropouts. When the rear derailleur cable is routed partially along the top tube, it is also routed along the seat stay. One combination aluminum/carbon fiber racing frame design uses carbon fiber for the seat stays and aluminum for all other tubes. This takes advantage of the better vibration absorption of carbon fiber compared to aluminum.
A single seat stay or mono stay refers to seat stays which merge onto one section before joining the front triangle of the bicycle, thus meeting at a single point. A dual seat stay refers to seat stays which meet the front triangle of the bicycle at two separate points, usually side-by-side.
There may be a bridge or brace that connects the stays above the rear wheel and below the connection with the seat tube. Besides additional bracing, this provides a mounting point for rear brakes, fenders, and racks. The seat stays themselves may also provide a mounting points for rear rim or disc brakes. Usually, no rear mount is provided on a fixed gear or track frame.
[edit] Frame geometry
The length of the tubes, and the angles at which they are attached define a frame geometry. In comparing different frame geometries, designers often compare the seat tube angle, head tube angle, (virtual) top tube length, and seat tube length. To complete the specification of a bicycle for use, the rider adjusts the relative positions of the saddle, pedals and handlebars:
- saddle height, the distance from the center of the bottom bracket to the point of reference on top of the middle of the saddle.
- reach, the distance from the saddle to the handlebar.
- drop, the vertical distance between the reference at the top of the saddle to the handlebar.
- setback, the horizontal distance between the front of the saddle and the center of the bottom bracket.
The geometry of the frame depends on the intended use. For instance, a road bicycle will place the handlebars in a lower and further position relative to the saddle giving a more crouched riding position; whereas a utility bicycle emphasizes comfort and has higher handlebars resulting in an upright riding position.
Frame geometry also affects handling characteristics. For more information, see the Bicycle and motorcycle geometry and the Bicycle and motorcycle dynamics articles.
[edit] Frame size
Frame size was traditionally measured from the center of the bottom bracket to the top of the seat tube. Typical "medium" sizes are 21 or 23 inches (approximately 53 or 58 cm) for a European men's racing bicycle or 18.5 inches (about 46 cm) for a men's mountain bicycle. The wider range of frame geometries that are now made have given rise to different ways of measuring frame size; see the discussion by Sheldon Brown. Touring frames tend to be longer, while racing frames are more compact.
[edit] Road and triathlon bicycles
A road racing bicycle is designed for efficient power transfer at minimum weight and drag. Broadly speaking, the road bicycle geometry is categorized as either a traditional geometry with a horizontal top tube, or a compact geometry with a sloping top tube.
Traditional geometry road frames are often associated with more comfort and greater stability, and tend to have a longer wheelbase which contribute to these two aspects. Compact geometry road frames have a lower center of gravity and tend to have a shorter wheelbase and smaller rear triangle, which give the bike quicker handling. Compact geometry also allows the top of the head tube to be above the top of the seat tube, increasing standover clearance, and lowering the center of gravity. Opinion is divided on the riding merits of the compact frame, but several manufacturers claim that a reduced range of sizes can fit most riders, and that it is easier to build a frame without a perfectly level top tube.
Road bicycles for racing tend to have a steeper seat tube angle, measured from the horizontal plane. This positions the rider areodynamically and arguable in a stronger stroking position. The trade-off is comfort. Touring and comfort bicycles tend to have more slack seat tube angle traditionally. This positions the rider more on his sitting bones and takes weight off of the wrists, arms, neck and for men, the higher end of scrotum providing less strain to the arms and wrist and circulation to the urninary and reproductive areas. With slacker angle designers lengthen the chainstay so that the center of gravity that would otherwise be farther to the back on over the wheels are more ideally repositioned over the middle of the bike frame. The longer wheelbase contributes to effective shock absorption. In modern mass manufactured touring and comfort bikes, the seat tube angle is negligibly slacker, perhaps because of the need to otherwise reset welding jigs in automated processes and thus increase manufacturing costs, and thus do not provide the comfort of traditionally made or custom made frames which do have noticeably slacker seat tube angles.
Road racing bicycles are governed by UCI regulations, which state among other things that the frame must consist of two triangles. Hence the designs that lack a seat tube or top tube are not allowed in UCI-sanctioned road races.
Triathlon or time trial specific frames rotate the rider forward around the axis of the bottom bracket of the bicycle as compared to the standard road bicycle frame. The reason for this is to put the rider in an even lower, more aerodynamic position. While handling and stability is reduced, these bicycles are designed to be ridden in environments with less group riding aspects. These frames tend to have steep seat tube angles and low head tubes, and shorter wheelbase for the correct reach from the saddle to the handlebar.
Track frames have much in common with road and time trial frames, but come with rear facing dropouts that allow one to adjust the position of the rear wheel horizontally to set the proper chain tension. Also the seat tube angle is steeper than road racing bikes, making a track frame a more nervous bike to ride.
[edit] Mountain bicycles
For ride comfort and better handling, shock absorbers are often used; there are a number of variants, including full suspension models, which provide shock absorption for the front and rear wheels; and front suspension only models (hardtails) which deal only with shocks arising from the front wheel. The development of sophisticated suspension systems in the 1990s quickly resulted in many modifications to the classic diamond frame.
Recent mountain bicycles with rear suspension systems have a pivoting rear triangle to actuate the rear shock absorber. There is much manufacturer variation in the frame design of full-suspension mountain bicycles, and different designs for different riding purposes.
[edit] Variations
[edit] Frame materials
Historically, the tubes of the frame have been made of steel. While steel is still used, newer frames can also be made from aluminum alloys, titanium, carbon fiber, and even bamboo. Occasionally, diamond frames have been formed from sections other than tubes. These include I-beams and monocoque. Materials that have been used in these frames include wood (solid or laminate), magnesium (cast I-beams), and thermoplastic. Several properties of a material help decide whether it is an appropriate in the construction of bicycle frame:
- Density (or specific gravity) is a measure of how light or heavy the material per unit volume.
- Stiffness (or elastic modulus) can in theory affect the ride comfort and power transmission efficiency (but in practice, because even a very flexible frame is much more stiff than the tires and saddle, ride comfort is in the end more a factor of saddle choice, frame geometry, tire choice, and bicycle fit).
- Yield strength determines how much force is needed to permanently deform the material. (for crash-worthiness).
- Elongation determines how much deformity the material allows before cracking (for crash-worthiness).
- Fatigue limit and Endurance limit determines the durability of the frame when subjected to cyclical stress from pedaling or ride bumps.
Tube engineering and frame geometry can overcome much of the perceived shortcomings of these particular materials.
[edit] Steel
Steel is stiff, strong, easy to work, and relatively inexpensive, but more dense than many other structural materials.
A classic type of construction for both road bicycles and mountain bicycles uses standard cylindrical steel tubes which are connected with lugs. Lugs are fittings made of thicker pieces of steel. The tubes are fitted into the lugs, which encircle the end of the tube, and are then brazed to the lug. Historically, the lower temperatures associated with brazing (silver brazing in particular) had less of a negative impact on the tubing strength than high temperature welding, allowing relatively light tube to be used without loss of strength. Recent advances in metallurgy ("air hardening") have created tubing that is not adversely affected, or whose properties are even improved by high temperature welding temperatures, which has allowed both TIG & MIG welding to sideline lugged construction in all but a few high end bicycles. More expensive lugged frame bicycles have lugs which are filed by hand into fancy shapes - both for weight savings and as a sign of craftsmanship. Unlike MIG or TIG welded frames, a lugged frame can be more easily repaired in the field due to its simple construction. Also, since steel tubing can rust, the lugged frame allows a fast tube replacement with virtually no physical damage to the neighboring tubes.
A more economical method of bicycle frame construction uses cylindrical steel tubing connected by TIG welding, which does not require lugs to hold the tubes together. Instead, frame tubes are precisely aligned into a jig and fixed in place until the welding is complete. Fillet brazing is another method of joining frame tubes without lugs. It is more labor intensive, and consequently is less likely to be used for production frames. As with TIG welding frame tubes are precisely mitred and then a fillet of brass is melted onto the joint. Some custom frame builders and their customers prefer a fillet braze frame for aesthetic (smooth curved appearance) reasons.
Among steel frames, using butted tubing reduces weight and increases cost. Butting means that the wall thickness of the tubing changes from thick at the ends (for strength) to thinner in the middle (for lighter weight).
Cheaper steel bicycle frames are made of mild steel, such as might be used to manufacture automobiles or other common items. However, higher-quality bicycle frame are made of high strength steel alloys (generally chromium-molybdenum, or "chromoly" steel alloys) which can be made into lightweight tubing with very thin wall gauges. One of the most successful older steels was Reynolds "531", a manganese-molybdenum alloy steel. Reynolds and Columbus are two of the most famous manufacturers of bicycle tubing. A few medium-quality bicycles used these steel alloys for only some of the frame tubes. An example was the Schwinn Le tour (at least certain models), which used chromoly steel for the top and bottom tubes but used lower-quality steel for the rest of the frame.
A high-quality steel frame is lighter than a regular steel frame. This lightness makes it easier to ride uphill, and to accelerate on the flat. Also many riders feel thin-walled lightweight steel frames have a "liviness" or "springiness" quality to their ride.
If the tubing label has been lost, a high-quality (chromoly or manganese) steel frame can be recognized by tapping it sharply with a flick of the fingernail. A high-quality frame will produce a bell-like ring where a regular-quality steel frame will produce a dull thunk. They can be also recognized by their weight (around 2.5 kg for frame and forks) and the type of lugs and dropouts used.
[edit] Aluminum alloys
Aluminum alloys have lower density and lower strength compared with steel alloys (both are reduced by approximately 2/3). Aluminum can, however, be used to build a frame that is lighter than steel. Also, in contrast to some steel and titanium alloys, which have a fatigue endurance limit, aluminum has no such limit; even the smallest repeated stresses will eventually cause failure if repeated enough times. However, alloying, good mechanical design, and good construction practices help to extend the fatigue life of aluminum bicycle frames to acceptable lengths.
The most popular type of construction today uses aluminum alloy tubes that are connected together by Tungsten Inert Gas (TIG) welding. Welded aluminum bicycle frames started to appear in the marketplace only after this type of welding become economical in the 1970s. Comparing equal tube sizes, aluminum is less stiff than steel, but it is also lighter. In order to raise aluminum’s stiffness, the tubing diameter is increased beyond that of steel and thus known as oversized tubing. The greater diameter generally results in a frame that is significantly stiffer than steel. This is not always a benefit, since the flex of a compliant steel frame feels more comfortable to many riders compared to an aluminum frame. On the other hand, stiffness improves acceleration and handling.
Aluminum frames are generally recognized as having a lower weight than steel, although this is not always the case. An inexpensive aluminum frame may be heavier than an expensive steel frame. Butted aluminum tubes—where the wall thickness of the middle sections are made to be thinner than the end sections—are used by some manufacturers for weight savings. Other innovations include the shaping of the cross-section of the tubes, such as in an oval or teardrop shapes, for optimizing stiffness and compliance in different directions as well as reducing wind resistance.
[edit] Titanium
Titanium is perhaps the most exotic and expensive metal commonly used for bicycle frame tubes. It combines many desirable characteristics, including a high strength to weight ratio and excellent corrosion resistance. Reasonable stiffness (roughly half that of steel) allow for many titanium frames to be constructed with "standard" tube sizes comparable to a traditional steel frame, although larger diameter tubing is becoming more common for more stiffness. As many titanium frames can be much more expensive than similar steel alloy frames, cost can put them out of reach for many cyclists. Many common titanium alloys and even specific tubes were originally developed for the aerospace industry.
Titanium frame tubes are almost always joined by Tungsten inert gas welding (TIG), although vacuum brazing has been used on early frames. It is more difficult to machine than steel or aluminum, which sometimes limits its uses and also raises the effort (and cost) associated with this type of construction.
[edit] Carbon fiber
Carbon fiber, a composite material, is an increasingly popular non-metallic material commonly used for bicycle frames.[1][2][3][4] Although expensive, it is light-weight, corrosion resistant and strong, and can be formed into almost any shape desired. The result is a frame that can be fine-tuned for specific strength where it is needed (to withstand pedaling forces), while allowing flexibility in other frame sections (for comfort). Custom carbon fiber bicycle frames may even be designed with individual tubes that are strong in one direction (such as laterally), while compliant in another direction (such as vertically). The ability to design an individual composite tube with properties that vary by orientation cannot be accomplished with any metal frame construction commonly in production.
Some carbon fiber frames use cylindrical tubes that are joined with adhesives and lugs, in a method somewhat analogous to a lugged steel frame. Another type of carbon fiber frames are manufactured in a single piece, called monocoque construction. While these composite materials provide light weight as well as high strength, they have much lower impact resistance and consequently are prone to damage if crashed or mishandled. It has also been suggested that these materials are vulnerable to fatigue failure, a process which occurs with use over a long period of time.
Many racing bicycles built for individual time trial races and triathlons employ composite construction because the frame can be shaped with an aerodynamic profile not possible with cylindrical tubes, or would be excessively heavy in other materials. While this type of frame may in fact be heavier than others, its aerodynamic efficiency may help the cyclist to attain a higher speed and consequently outweigh other considerations in such events.
Other materials besides carbon fiber, such as metalic boron, can be added to the matrix to enhance stiffness further.[5]
[edit] Thermoplastic
Thermoplastics, according to a study from 2001 done by the Advanced Technology Project (ATP), is a new material that is still within testing.[1] It was originally developed by "Ford Motor Company Scientific Research Laboratory" and "General Electric Research and Development" within a joint venture. The ATP pioneered the use of cyclic thermoplastics in automotive components. Such parts are used in Ford's Aston Martin model automobile. Intellectual proprietary rights were sold to Cyclics Corporation which is using the process to produce such items as recyclable bicycle frames.
[edit] Magnesium
A handful of bicycle frames are made from magnesium, which has around 64% the density of aluminum. Some early frames were die cast in one piece and composed of I shaped I-beams rather than tubes. However, modern magnesium frames are constructed conventionally using tubes.[6]
Reportedly, a major problem with these frames is corrosion caused by the chemical reactivity of magnesium. Unless care is taken during assembly of the bicycle, there is likely to be galvanic corrosion at points where steel or aluminum components attach to the frame.[7]
[edit] Bamboo
Several bicycle frames have been made of bamboo tubes connected with steel or carbon fiber lugs. Aesthetic appeal has often been as much as a motivator as ride characteristics.[8][9][10]
[edit] Wood
Several bicycle frames have been made of wood, either solid or laminate. Although one survived 265 grueling kilometers of the Paris-Roubaix race, aesthetic appeal has often been as much of a motivator as ride characteristics.[11] Wood is used to fashion bicycles in East Africa.[12]
[edit] Combinations
A recent innovation is the construction of frames out of tubes of different materials. This is intended to provided the desired stiffness, compliance, or damping in different areas better than can be accomplished with a single material. The combined materials are usually carbon fiber and a metal, either steel, aluminum, or titanium. One implementation of this approach includes a metal down tube and chain stays with carbon top tube, seat tube, and seat stays.[13] Another is a metal main triangle and chain stays with just carbon seat stays.[14]
[edit] Suspension
Many bicycles, especially mountain bikes, have a suspension built into their frame.
[edit] References
- ^ Sheldon Brown: Frame Materials for the Touring Cyclist. Retrieved on March 13, 2007.
- ^ Why Cycle: Bike Frame Materials. Retrieved on March 13, 2007.
- ^ The Care Exchange: Material Assets. Titanium, Carbon Fiber, Aluminum or Steel - Which frame material is best for you?. Retrieved on March 13, 2007.
- ^ Why Titanium? :What matters?. Retrieved on March 13, 2007.
- ^ NewsBlaze: Trek Madone SSLx - The New Lance Bike. Retrieved on March 10, 2007.
- ^ Paketa Magnesium. Retrieved on January 16, 2007.
- ^ Galvanic Corrosion. Retrieved on January 16, 2007.
- ^ BME Bamboo MTB Frame (June 2004). Retrieved on January 16, 2007.
- ^ American Bamboo Society Bambucicletas (August 2006). Retrieved on January 16, 2007.
- ^ Calfee Design Bamboo Bike (2005). Retrieved on January 16, 2007.
- ^ Ottavia's Suitcase Magni Vinicio's Wooden Bicycles. Retrieved on January 16, 2007.
- ^ Wooden Bicycles in East Africa. Retrieved on January 16, 2007.
- ^ Lemond Spine Technology. Retrieved on March 14, 2007.
- ^ Specialized Allez Technical Specifications. Retrieved on March 14, 2007.
[edit] See also
[edit] External links
- Science of Cycling: Frames & Materials from the Exploratorium
- Sheldon Brown's "Revisionist Theory of Bicycle Sizing" - an explanation of the different ways of measuring frame sizes.
- Brano Meres' homemade bamboo mountain bike frame
- Dave Moulton, former frame builder – History, photos and information on choosing the correct size frame, etc.
- Metallurgy for Cyclists - discusses frame material properties in relation to suitability to frame use
- The Bicycle Forest's BikeCAD program allows you to design your own frame online.
- Uriedog Bicycle Works frames entirely built by hand