Apoptosis
De Wikipedia, la enciclopedia libre
La apoptosis es uno de los principales tipos de muerte celular programada (PCD). Como tal es un conjunto de reacciones bioquímicas que ocurre en las células de un organismo pluricelular, encaminadas a producir la muerte de la célula de manera controlada, a diferencia de la necrosis.
La apoptosis puede tener dos motivos fundamentales, como parte del desarrollo de estructuras corporales o bien para eliminar células que supongan una amenaza para la integridad del organismo. Se caracteriza por hipereosinofilia y retracción citoplasmática con fragmentación nuclear (cariorrexis), desencadenada por señales celulares controladas genéticamente. Estas señales pueden originarse en la célula misma o de la interacción con otras células.
La apoptosis es un fenómeno biológico fundamental, permanente, dinámico e interactivo. Existen mecanismos pro- o anti-apoptóticos, regulados genéticamente, que actúan de forma activa (pues consumen energía) y equilibrada. Como función necesaria para evitar la sobreproducción celular se sospechaba de su existencia, pero es un proceso ordenado y "silencioso" que no produce reacción tisular y por ello difícil de captar. En 1972, Kerr y col., estudiando orgánulos en células neoplásicas, detectaron que muchas células desaparecían en los cultivos. Esto llevó al estudio de imágenes cinemáticas que mostraron mediante microscopía electrónica las alteraciones que sufre la célula en un proceso que es de corta duración, durando en tales cultivos menos de una hora.
La apoptosis puede estar frenada, en equilibrio o estimulada. Por ejemplo, está frenada durante el desarrollo de espermatogonias, en las criptas de las glándulas intestinales (que es un epitelio de crecimiento rápido) y durante la lactancia en su período preparatorio, en que el tejido mamario aumenta su masa celular. Está en equilibrio respecto de la mitosis en los tejidos adultos sanos. Es muy significativo su rol homeostático en la médula ósea, donde debe destruir de manera constante la mitad de una inmensa cantidad de células que sólo en leucocitos significa 5 x 1011 cada 24 h. Está estimulada cuando existen células envejecidas, mutadas, neoplásicas o no neoplásicas, alteradas por tóxicos y las que están en proceso de metamorfosis o atresia. Se ha estudiado esta condición en neutrófilos envejecidos, en megacariocitos con citoplasma agotado por producción excesiva de plaquetas, en la atresia folicular del ovario, en folículos pilosos en evolución y en la mama durante la involución post-lactancia.
Tabla de contenidos |
[editar] Apoptosis y necrosis
Dos formas de muerte celular son habituales en el organismo: necrosis y apoptosis. Las características morfológicas de ambas permiten, en la mayoría de los tejidos, establecer claras diferencias.
A diferencia de la apoptosis, la necrosis es una forma de muerte celular que resulta de un proceso pasivo, accidental y que es consecuencia de la destrucción progresiva de la estructura con alteración definitiva de la función normal en un daño irreversible. Este daño está desencadenado por cambios ambientales como la isquemia, temperaturas extremas y traumatismos mecánicos. En la apoptosis el proceso afecta a determinadas células, no necesariamente contiguas, y no a todas en un área tisular. La membrana celular no se destruye, lo que impide el escape al espacio extracelular de su contenido resultando un proceso "silencioso" sin inflamación. En el citoplasma se produce granulación fina, con conservación de algunos orgánulos, en especial las mitocondrias que tienen un rol interactivo importante. A nivel nuclear la cromatina se condensa agrupada en varios sectores formando cuerpos apoptóticos. La membrana celular se recoge sobre las eminencias globuliformes que forman los elementos deteriorados del citoplasma y núcleo. Finalmente, fagocitos captan la célula en su totalidad impidiendo que se produzca alarma en el resto del tejido. Se ha demostrado, al menos en tejidos epiteliales, que si algo de material apoptótico escapa a la acción de los fagocitos es captado por células vecinas. La participación de células vecinas en este proceso se manifiesta además por la capacidad de éstas de enviar señales moleculares a la célula que debe morir como mecanismo complementario al que desarrolla la célula misma cuando se determina molecularmente su autodestrucción. El proceso de apoptosis dura entre 30 y 60 minutos en células en cultivo. Uno de los más lentos se produce en células hepáticas empleando como promedio 3 horas. El estudio e identificación específico de cuerpos apoptóticos se ha logrado con tinciones derivadas de la uridina (TUNEL en que la U corresponde a uridina). Sin embargo, en algunas células como las neuronas, la uridina tiñe también tejidos necróticos perdiendo la especificidad. En tales casos se recurre a anticuerpos monoclonales capaces de reconocer fragmentos de ADN integrados en los cuerpos apoptóticos. La imagen que da la apoptosis al microscopio electrónico se caracteriza por la presencia de fragmentos de cromatina agrupados en conglomerados globuliformes, la granulación fina del contenido citoplasmático, la persistencia de algunos orgánulos hasta el final del proceso, como las mitocondrias, y la integridad de la membrana celular.
[editar] Mecanismo
Dado que la apoptosis actúa como oponente a la mitosis, es muy importante su relación con el ciclo celular. En el ciclo celular hay cuatro fases: mitosis (M), fase de control celular G1, síntesis de ADN (S) y fase de control G2. La apoptosis puede iniciarse en el tercio final de G1 para impedir que una célula dañada ingrese a la fase de síntesis de manera que las mutaciones no se reproduzcan durante la replicación del ADN y en la fase G2 para impedir que las células que no hayan llegado a la madurez entren en mitosis.
Los motores del ciclo celular son complejos proteicos formados por subunidades llamadas ciclinas y kinasas dependientes de ciclinas (CDK), sintetizados por genes específicos. La síntesis de estos complejos es constante porque son altamente inestables, de ahí que el nivel de ellos varíe de acuerdo al momento evolutivo de la fase a que están asignados. Así en el avance de la fase G1 a la S actúa la ciclina D asociada a las kinasas ciclinodependientes 2, 4 y 6 (cdk 2 4 6). En la segunda mitad del G1 aumenta la presencia de ciclina E con la kinasa ciclinodependiente 2. En la fase de síntesis actúa la ciclina A con cdk 2 y en la fase G2, la ciclina B con cdk 2. En la fase G1 se han podido determinar dos puntos importantes: G0 (en la mitad de la fase) donde el ciclo puede detenerse y la célula bloquea su crecimiento pero se mantiene metabólicamente activa y un punto de restricción (en unión de los 2/3 con 1/3 final de esta fase) en que se puede detener el ciclo para corregir defectos celulares (en especial de su ADN), lo que si no se consigue induce el mecanismo de muerte celular. En la fase G2 también existen elementos de detección de inmadurez celular que inducen la apoptosis cuando la célula no está capacitada para entrar en mitosis. De esta manera, durante el ciclo celular se determina cuándo la célula debe entrar en el proceso de autodestrucción o continuar el ciclo y dividirse. Se ejerce así un balance entre mitosis y apoptosis, regulando la población celular de cada tejido.
En el mecanismo molecular que controla la apoptosis actúan varios agentes, de los cuales uno de los más importantes y mejor estudiados es el complejo de cisteinil-aspartato proteasas (caspasas). Se han descrito 11 caspasas en células humanas que provocan una degradación proteica bien definida hasta llegar a la formación de cuerpos apoptóticos. Algunas caspasas son "iniciadoras" y otras "efectoras" del proceso catalítico, actuando sobre endonucleasas que son las responsables directas de la fragmentación del ADN. La cadena de degradación proteica tiene sucesivos clivajes dependientes de la ubicación del ácido aspártico que se repite en la estructura de la enzima. Se han descrito hasta 40 sustratos en la catálisis, proceso que en células cultivadas dura entre 30 y 40 minutos. La activación de las caspasas, que existen en calidad de pro-caspasas inactivas, se produce por diversas vías en que participan varios complejos moleculares.
[editar] Vía extrínseca
La vía extrínseca o de los "receptores de muerte" establece conexiones con el espacio extracelular, recibiendo señales proapoptóticas desde el exterior y de las células vecinas. Dos familias de receptores se han identificado con estas características: la proteína Fas y el factor de necrosis tumoral (TNF).
La proteína transmembrana Fas en su porción intracelular enlaza con un factor intermedio denominado FADD (factor associated death domain), nombre que sólo señala que está comprometido con la zona de la molécula Fas que participa en la muerte celular, activando las caspasas-8 y -10. En cambio, si la parte interna de la molécula se asocia a otro factor llamado DaXX, se activan proteín-kinasas que conducen al efecto contrario, es decir, estimulan el ciclo celular y la mitosis. Esta vía Fas permanece inactiva hasta que se produce en su parte externa el enlace con un cofactor llamado ligando Fas, proteína que actúa como detonador que enciende una vía en que sólo las caspasas están inactivas y el resto de la cadena está preparado para recibir el enlace exterior. Esta característica permite actuar con gran rapidez sin necesidad de sintetizar otros factores.
Algo similar sucede con el otro receptor de membrana TNF. Su porción intracelular conecta con complejos intermedios como el Tradd (TNF receptor associated death domain) y Raidd (receptor associated interleukine death domain) que activan caspasas "iniciadoras" de la apoptosis. Pero si se asocian a otro complejo llamado Traf (TNF receptor associated factor) activan proteín-kinasas y estimulan la proliferación celular, es decir, el efecto contrario.
Las alternativas de una misma vía de actuar en pro o en contra de la apoptosis se repite en otros mecanismos.
[editar] Vía intrínseca o mitocondrial
Otra vía de inducción de apoptosis es la vía llamada mitocondrial. Las proteínas de la familia de Bcl-2 regulan la apoptosis ejerciendo su acción sobre la mitocondria. La activación de proteínas pro-apoptóticas de la familia de Bcl-2 produce un poro en la membrana externa de las mitocondrias que permite la liberación de numerosas proteínas del espacio intermembrana; entre ellas, el citocromo c.
El citocromo c, una vez en el citosol, activa un complejo proteico llamado "apoptosoma", que activa directamente a la caspasa-9. Una vez que la caspasa-9 está activada, ésta activa a las caspasas efectoras como la caspasa-3, lo que desencadena las últimas fases de la apoptosis.
Las proteínas de la familia de Bcl-2 se agrupan en tres familias: la familia de las proteínas antiapoptóticas (Bcl-2, Bcl-Xl, Mcl-1 y otras); la familia de proteínas proapoptóticas de tipo "multidominio" (Bax y Bak) y las proteínas proapoptóticas de tipo "BH3-only" (Bid, Bim, Bad y otras). Las proteínas tipo multidominio pueden producir poros por si solas en liposomas, lo que indica que probablemente son suficientes para formar el poro mitocondrial que permite la liberación del citocromo c. Las proteínas tipo BH3-only activan a estas proteínas, y las antiapoptóticas inhiben la formación del poro. Estas proteínas son los reguladores más importantes del proceso de apoptosis.
La vía mitocondrial puede conectarse también con la vía de receptores de muerte, ya que una vez activada la caspasa-8 por dichos receptores, esta caspasa activa a la proteína Bid, lo que provoca la apertura del poro mitocondrial y la activación de la caspasa-9.
[editar] Funciones de la apoptosis
[editar] Eliminación de tejidos dañados o infectados
La apoptosis puede ocurrir, por ejemplo, cuando una célula se halla dañada y no tiene posibilidades de ser reparada, o cuando ha sido infectada por un virus. La "decisión" de iniciar la apoptosis puede provenir de la célula misma, del tejido circundante o de una reacción proveniente del sistema inmune. Cuando la capacidad de una célula para realizar la apoptosis se encuentra dañada (por ejemplo, debido a una mutación), o si el inicio de la apoptosis ha sido bloqueado (por un virus), la célula dañada puede continuar dividiéndose sin mayor restricción, resultando en un tumor que puede ser de carácter canceroso. Por ejemplo, como parte del "secuestro" del sistema genético de la célula llevado a cabo por los papillomavirus humanos (HPV), un gen denominado E6 se expresa originando un producto que degrada la proteína p53, vital para la ruta apoptótica.
También condiciones de stress como la falta de alimentos, así como el daño del ADN provocado por tóxicos o radiación, pueden inducir a la célula a comenzar un proceso apoptótico. Una ejemplo sería la apoptosis mediada por la enzima nuclear, poli-ADP-ribosa polimerasa-1 (PARP-1), crucial en el mantenimiento de la integridad genómica. Un activación masiva de dicha enzima puede deplecionar la célula de nucleótidos ricos en energía, provocando una cadena de transducción de señales del núcleo a la mitocondria que iniciaría la apoptosis.
[editar] Desarrollo
La muerte celular programada es parte integral del desarrollo de los tejidos tanto de plantas (viridiplantae) como de animales pluricelulares (metazoa), y no provoca la respuesta inflamatoria característica de la necrosis. En otras palabras, la apoptosis no se parece al tipo de reacción resultante del daño a los tejidos debido a infecciones patogénicas o accidentes. En lugar de hincharse y reventar -y, por tanto, derramar su contenido, posiblemente dañino, hacia el espacio intercelular-, las células en proceso de apoptosis y sus núcleos se encogen, y con frecuencia se fragmentan. De esta manera, pueden ser eficientemente englobadas vía fagocitosis y, consecuentemente, sus componentes son reutilizados por macrófagos o por células del tejido adyacente.
[editar] Homeostasis
En un organismo adulto, la cantidad de células que componen un órgano o tejido debe permanecer constante, dentro de ciertos límites. Las células de la sangre y de piel, por ejemplo, son constantemente renovadas por sus respectivas células progenitoras. Por lo tanto, esta proliferación de nuevas células tiene que ser compensada por la muerte de otras células. A este proceso se le conoce como homeostasis, aunque algunos autores e investigadores como Steven Rose y Antonio Damasio han sugerido homeocinesis como un término más preciso y elocuente.
La homeostasis se logra cuando la relación entre la mitosis y la muerte celular se encuentra en equilibrio. Si este equilibrio se rompe, pueden ocurrir dos cosas:
- Las células se dividen más rápido de lo que mueren, desarrollando un tumor.
- Las células se dividen más lentamente de lo que mueren, produciéndose un grave trastorno de pérdida celular.
Ambos estados pueden ser fatales o potencialmente dañinos.
[editar] Regulación del sistema inmunitario
Ciertas células del sistema inmunitario, los linfocitos B y linfocitos T, son sofisticados agentes de la respuesta defensiva del organismo frente a infecciones así como células propias que hayan adquirido o desarrollado algún tipo de malignidad. Para llevar a cabo su trabajo, las células B y T deben tener la habilidad de discriminar lo propio de lo extraño y lo sano de lo enfermo, gracias a la especialidad de sus receptores. De hecho, los linfocitos T citotóxicos pueden ser activados por fragmentos de proteínas expresadas inapropiadamente (derivadas, por ejemplo, de una mutación maligna) o por antígenos extraños producidos como consecuencia de una infección intracelular. Después de activarse tienen la capacidad de migrar, proliferar y reconocer las células afectadas, induciendo una respuesta de muerte celular programada.
Los receptores de las células B y T inmaduras no se generan por procesos de una elevada precisión, sino por procesos aleatorios de elevada capacidad para generar variabilidad. Esto significa que muchas de estas células inmaduras pueden no ser efectivas (porque su receptor no sea capaz de unir ningún antígeno conocido) o ser peligrosas para el propio organismo porque sus receptores sean capaces de reconocer con elevada afinidad antígenos propios. Si estas células fuesen liberadas sin otros procesamientos, muchas podrían volverse autorreactivas y atacar células sanas. El mecanismo por el que el sistema inmune regula este proceso es la eliminación tanto de los no efectivos como los potencialmente autorreactivos mediante apoptosis.
Como se ha descrito en los anteriores apartados, todos los tejidos dependen de una continua recepción de señales de supervivencia. En el caso de las células T, mientras se desarrollan y maduran en el timo, las señales de supervivencia dependen de su capacidad para reconocer antígenos extraños. Aquellas que no superan esta prueba, alrededor de un 97 % de las células T producidas, son eliminadas por apoptosis. Las supervivientes son testadas a su vez frente a antígenos propios, y aquellas que reconocen estos antígenos con elevada afinidad son eliminadas de la misma manera.
Por lo tanto, el desarrollo de un sistema inmune maduro y efectivo depende de una serie de reguladores positivos y negativos de las vías de apoptosis.
[editar] Patologías vinculadas con la apoptosis
La apoptosis es una función biológica de gran relevancia en la patogenia de varias enfermedades estudiadas hasta el momento. Podemos destacar el cáncer, malformaciones, trastornos metabólicos, neuropatías, lesiones miocárdicas y trastornos del sistema inmunitario.
- Enfermedades asociadas a inhibición de apoptosis
-
- Cáncer: linfoma no Hodgkin folicular (Bcl-2 +), carcinoma (p53 +), tumores hormono-dependientes
- Enfermedades autoinmunitarias: lupus eritematoso sistémico, glomerulonefritis autoinmunitaria
- Infecciones virales: Herpesvirus, Poxvirus, Adenovirus
- Enfermedades asociadas a aumento de apoptosis
- SIDA
- Enfermedades neurodegenerativas: enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, retinitis pigmentosa, degeneración cerebelosa
- Síndromes mielodisplásicos (MDS): anemia aplástica
- Daño isquémico: infarto de miocardio, apoplejía, daño por reperfusión, daño hepático por alcoholismo
[editar] Actualidad de la apoptosis
La apoptosis ha sido tema de creciente atención en la Biología celular y en el estudio del desarrollo de los organismos, así como en la investigación de enfermedades tales como el cáncer. Así lo demuestra el hecho que el premio Nobel año 2002 para Fisiología y Medicina fuese otorgado a Sydney Brenner (Gran Bretaña), H. Robert Horvitz (EE.UU.) y John E. Sulston (GB) "por sus descubrimientos concernientes a la regulación genética del desarrollo de órganos y la muerte celular programada" (véase [1]).
[editar] Véase también
- Apaf-1
- Bcl-2
- Cáncer
- Caspasas
- Inmunología
- p53
- Autólisis
- Angiogénesis
- Metástasis
[editar] Referencias
- Horvitz HR. A first insight into the molecular mechanisms of apoptosis Cell. 2004 Jan 23;116(2 Suppl):S53-6, 1 p following S59. PMID 10197583.
- Lawen A. Apoptosis-an introduction Bioessays. 2003 Sep;25(9):888-96. PMID 12938178.
- Yuan J, Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans Cancer Res. 1999 Apr 1;59(7 Suppl):1701s-1706s. PMID 15055582.