New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Condensado de Bose-Einstein - Wikipedia, la enciclopedia libre

Condensado de Bose-Einstein

De Wikipedia, la enciclopedia libre

Distribución de velocidades que confirma la existencia de un nuevo estado de agregación de la materia, el condensado de Bose-Einstein. Datos obtenidos en un gas de átomos de rubidio, la coloración indica la cantidad de átomos a cada velocidad, con el rojo indicando la menor y el blanco indicando la mayor. Las áreas blancas y celestes indican las menores velocidades. A la izquierda se observa el diagrama inmediato anterior al condensado de Bose-Einstein y al centro el inmediato porterior. A la derecha se observa el diagrama luego de cierta evaporación, con la sustancia cercana a un condensado de Bose-Einstein puro. El pico no es infinitamente angosto debido al Principio de indeterminación de Heisenberg: dado que los átomos están confinados en una región del espacio, su distribución de velocidades posee necesariamente un cierto ancho mínimo. La distribución de la izquierda es para T > Tc (sobre 400 nanokelvins (nK)), la central para T < Tc  (sobre 200 nK) y la de la derecha para T << Tc(sobre 50 nK)
Distribución de velocidades que confirma la existencia de un nuevo estado de agregación de la materia, el condensado de Bose-Einstein. Datos obtenidos en un gas de átomos de rubidio, la coloración indica la cantidad de átomos a cada velocidad, con el rojo indicando la menor y el blanco indicando la mayor. Las áreas blancas y celestes indican las menores velocidades. A la izquierda se observa el diagrama inmediato anterior al condensado de Bose-Einstein y al centro el inmediato porterior. A la derecha se observa el diagrama luego de cierta evaporación, con la sustancia cercana a un condensado de Bose-Einstein puro. El pico no es infinitamente angosto debido al Principio de indeterminación de Heisenberg: dado que los átomos están confinados en una región del espacio, su distribución de velocidades posee necesariamente un cierto ancho mínimo. La distribución de la izquierda es para T > Tc (sobre 400 nanokelvins (nK)), la central para T < Tc (sobre 200 nK) y la de la derecha para T << Tc(sobre 50 nK)

El condensado de Bose-Einstein es un estado de agregación de la materia que se da en ciertos materiales a muy altas y bajas temperaturas. La propiedad que lo caracteriza que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental. El condensado es una propiedad cuántica que no tiene análogo clásico. Debido al Principio de exclusión de Pauli, sólo las partículas pipílitas pueden tener este estado de agregación.Esto quiere decir que los atomos separan y forman iones. A la agrupaciòn de particulas en ese nivel se le llama condensado de:Bose-Einsten,etc...


Tabla de contenidos

[editar] Primeros desarrollos

En la década de 1920, Satyendra Nath Bose y Albert Einstein publican conjuntamente un artículo científico acerca de los fotones de luz y sus propiedades. Bose describe ciertas reglas para determinar si dos fotones deberían considerarse idénticos o diferentes. Estas se llaman las "Estadísticas de Bose" (o a veces las "Estadísticas de Bose-Einstein"), y Einstein aplica estas reglas a los átomos preguntándose cómo se comportarían los átomos de un gas si se les aplicasen estas reglas. Así descubre los efectos que vienen del hecho de que a muy bajas temperaturas la mayoría de los átomos están al mismo nivel cuántico, que sería el más bajo posible.

Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo.

Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental.

A la agrupación de partículas en ese nivel inferior se le llama Condensado de Bose-Einstein (BEC), porque la demostración está hecha de acuerdo con las ecuaciones de Einstein. Lo que seguramente no pudo imaginar es lo extraño que se vería una masa de materia con todos sus átomos en un solo nivel. Esto significa que todos los átomos son absolutamente iguales. No hay medida que pueda diferenciar uno de otro. Se trata de un estado de coherencia cuántica macroscópico.

[editar] Desarrollo teórico de la condensación de Bose-Einstein

Sea un gas de metano degenerado (esto es, alejado de la aproximación clásica de la estadística de Maxwell-Boltzmann y por tanto donde tiene relevancia la distinción entre fermiones y bosones). Consideramos que los únicos grados de libertad son traslacionales.

El número medio de partículas en un estado cuántico 'r' (o número de ocupación) viene dado por:

\bar{n}_r = \frac{1}{e^{\beta(\varepsilon_r - \mu)} - 1} [1]

Donde \beta = \frac{1}{kT} siendo k la constante de Boltzmann.

Esta función vale \infty cuando el argumento de la exponencial vale cero y cae rápidamente. Esto es debido a que los bosones no cumplen el principio de exclusión de Pauli y por tanto puede haber infinidad de ellos en el mismo estado cuántico individual.

Si el sistema tiene N partículas, entonces debe cumplirse que la suma de todas las partículas que se encuentren en cada estado cuántico 'r' debe dar el total.

N = \sum_r \frac{1}{e^{\beta(\varepsilon_r - \mu)} - 1} [2]

Si el sistema es cerrado, la relación [2] nos sirve para definir el potencial químico μ.

Supongamos además que el mínimo nivel de energía accesible a una partícula es \varepsilon_r = 0. Esto es admisible ya que coincide con el menor valor de la energía que puede tener un gas de partículas con grados traslacionales de libertad.

Esta imposición obliga a que \mu (T) \le 0. De no ser así, entonces habría estados cuya energía sería menor que el potencial químico y resultaría que los números medios de ocupación serían una cantidad negativa lo cual no es posible.

Supongamos que la diferencia entre dos niveles consecutivos de energía es tan pequeña que podemos cambiar el sumatorio por una integral.

Conviene separar el cálculo del número total de partículas en dos partes, una que de cuenta de aquellas cuyo valor de la energía es cero, y otro distinta de cero. De no hacerlo llegaríamos a una contradicción, como veremos.

N = N_0 + N^\prime

El número de partículas cuya energía es distinta de cero viene dada por la siguiente expresión, donde ρ(E) es la distribución de probabilidad que nos dice cuantas partículas tienen su energía comprendida entre E y E + dE.

N^\prime = \int_0^\infty \rho(E) \frac{1}{e^{\beta(E - \mu)} - 1} dE

Se puede demostrar que la distribución de probabilidades viene dada por:

\rho(E) = g \frac{4 \pi V}{h^3} \sqrt(2m^3) \sqrt{E}

Siendo g el grado de degeneración, V el volumen del sistema, h la constante de Planck, m la masa de los bosones y E la energía.

De tal manera que,

N^\prime = \int_0^\infty g \frac{4 \pi V}{h^3} \sqrt(2m^3) \sqrt{E} \frac{1}{e^{\beta(E - \mu)} - 1} dE =

= g \frac{4 \pi V}{h^3} \sqrt{2m^3} \int_0^\infty \frac{E^{1/2}}{e^{\beta(E - \mu)} - 1} dE

Haciendo el cambio de variable z = β(E − μ) se tiene:

= g \frac{4 \pi V}{h^3 \beta^{3/2}} \sqrt{2m^3} \int_0^\infty \frac{z^{1/2}}{e^{z} - 1} dz

Utilizando que:

\int_0^\infty \frac{u^{x - 1}}{e^u - 1} du = \Gamma(x) \zeta(x) para x > 1.

Donde Γ(x) es la función Gamma de Euler y ζ(x) es la función zeta de Riemann.

Se llega a que:

= g \frac{4 \pi V}{h^3 \beta^{3/2}} \sqrt{2m^3} \Gamma(3/2) \zeta(3/2)

De modo que:

N' = g\frac{(2m\pi)^{3/2}V}{h^3} \zeta(3/2) (kT)^{3/2} [3]

Es el número máximo de partículas que el sistema puede tener a una temperatura dada en los estados excitados. Lo llamaremos N'max.

Esto nos permite definir la llamada temperatura de Bose, o temperatura crítica, en la cual μ(T0) = 0.

N/V = g \frac{4\pi}{h^3} (2m^3)^{1/2} \int_0^\infty \frac{E^{1/2}}{e^{\beta_0 E} - 1} dE

Donde β0 = (kT0) − 1

Procediendo del mismo modo que en el cálculo anterior, se halla

T_0 = \frac{h^2}{2 m \pi k} \left( \frac{N}{g V \zeta(3/2)} \right)^{2/3}

Si hubiéramos tomado únicamente la expresión [3], tendríamos que:

\frac{N}{V} \sim T^{3/2}

Lo cual haría que en T = 0 no pudiera existir un gas de bosones, lo cual contradice la experiencia. Por eso hemos dividido el cálculo en dos partes.

Si dividimos la ecuación [3] por la densidad total del sistema obtenemos que:

\frac{N'_{max}}{N} = \left(\frac{T}{T_0}\right)^{3/2}

A temperaturas mucho mayores que T0, este cociente es mayor que la unidad. Eso significa que nuestro sistema admite más bosones en los estados excitados de los que tenemos actualmente.

A temperaturas menores que T0 el cociente es menor que la unidad. Eso significa que muchas de las partículas constituyentes de nuestro sistema se han ido al estado fundamental al no poder haber tantas en los estados excitados.

N_0 = \frac{1}{e^{-\beta \mu} - 1}

Es el otro sumando, el número de partículas en el estado fundamental. En T < T0 se verifica que N' \approx N'_{max} de modo que

N_0 = N - N' \simeq N -  N'_{max} = N \left( 1 - \frac{N'_{max}}{N} \right) = N \left[ 1 - \left(\frac{T}{T_0} \right)^{3/2} \right]

Aquí vemos como cuando T \rightarrow 0, N_0 \rightarrow N. Es decir, los bosones se agrupan en el estado fundamental.

Este fenómeno se conoce como condensación de Bose-Einstein. La denominación puede inducir a error pues no se trata de una condensación como un gas normal. Cuando un gas ideal clásico cambia de estado gaseoso a líquido decimos que se condensa, en ese caso disminuye su volumen (o aumenta su densidad). En el condensado de Bose no hay disminución de volumen, las partículas se quedan quietas.

Si dibujáramos en el espacio fásico (q, p) de posiciones y momentos conjugados, el condensado de un gas corriente estaría agrupado cerca de q = 0 (eje horizontal) mientras que en el condensado de Bose esta agrupación se produce en torno a p = 0 (eje vertical).

[editar] Obtención en laboratorio

Eric Cornell y Carl Weiman lograron en 1995 por primera vez, enfriar átomos al más bajo nivel de energía, menos de una millonésima de Kelvin por encima del Cero absoluto, una temperatura muy inferior a la mínima temperatura encontrada en el espacio exterior. Utilizaron el método de enfriamiento por láser, haciendo que la luz rebote en los átomos con más energía que su impacto sobre los mismos. Cuando los fotones rebotan en el átomo, el electrón en el átomo que absorbe el fotón salta a un nivel superior de energía y rápidamente salta de regreso a su nivel original, expulsando el fotón de nuevo, logrando el descenso de su temperatura.

Para que ello suceda se necesita el color y frecuencia exacta de láser para la clase de átomo a enfriar. Finalmente, la sustancia se enfría aún más con el evaporamiento magnético de los átomos con más energía. Consistente en dejar escapar del confinamiento magnético a los átomos más energéticos, que al escapar se llevan consigo más energía de la que le corresponde, logrando así dejar dentro lo de más baja temperatura.

[editar] Súperfluidez y Súperconductividad

La superconductividad es un ejemplo de condensado. En ésta son los pares de Cooper (asociaciones de una pareja de electrones) los que se comportan como un bosón y decae al nivel fundamental. La supercondutividad está caracterizada por la ausencia de resistencia eléctrica.

La superfluidez es otro ejemplo de condensado. El Helio cuando se enfría se licúa, si seguimos enfriando los átomos de Helio (que son bosones) descienden al nivel de mínima energía. Esto hace los átomos no adquieran energía por fricción, lo que hace que no disipe energía por movimiento. El resultado es una ausencia casi completa de viscosidad.

Se le atribuye un efecto cuántico macroscópico óptico al condensado Bose-Einstein de átomos de sodio que al inducirle electromagnéticamente el estado de traslucidez que tiene la propiedad de reducir la velocidad de la luz en forma asombrosa. Hasta 20 millones de veces su velocidad en el vacío, equivalente a 17 metros por segundo (m/s).

[editar] Véase también

[editar] Enlaces externos

Pagina del grupo MIT (w. Ketterle)

Homepage BEC (En español)

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu