Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Équivalent - Wikipédia

Équivalent

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir équivalence. 

La notion d'équivalence permet de dire précisément et « mathématiquement » quand deux fonctions ou deux suites ont le même comportement au voisinage d'un point ou de l'infini.

Une fois cet outil connu, se pose le problème du calcul des équivalents qui est d'une grande aide pour le calcul des développements asymptotiques, dont un cas particulier est le calcul des développements limités.

Pour bien s'en sortir dans ce travail, il faut bien savoir quelles opérations sur les équivalents sont permises et quelles autres sont interdites.

Sommaire

[modifier] L'équivalence pour les suites

[modifier] Définition

Soient un et vn deux suites à valeurs dans un même espace vectoriel normé E ou, si l'on veut, pour être moins général, dans un corps \mathbb{K}(\mathbb{R} ou \mathbb{C}), c'est d'ailleurs ce cas, le moins général, qui est le plus courant et le plus utile.

On dit que un et vn sont équivalentes si et seulement si, unvn est négligeable devant vn, ou, ce qui revient au même, vnun négligeable devant un.

Une définition équivalente peut être : il existe une suite \varepsilon_n (à valeurs K=R ou C selon le contexte), définie à partir d'un certain rang, qui tende vers zéro et vérifie u_n=(1+\varepsilon_n)v_n.

On note alors u_n\sim v_n.

[modifier] Cas particulier plus simple

Dans le cas particulier où la suite un (par exemple) ne s'annule pas à partir d'un certain rang, les suites un et vn sont équivalentes si, et seulement si, \frac{v_n}{u_n}\longrightarrow 1 quand n \rightarrow +\infty.

Pour le démontrer, il suffit de l'écrire.

[modifier] Autre formulation

On peut formuler les choses autrement : deux suites un et vn sont équivalentes si, et seulement si, on a un = vn + o(vn) (en utilisant la notation petit "o").

Pour le démontrer, il suffit de l'écrire.

[modifier] Propriétés

  • La relation "être équivalent à" est une relation d'équivalence.
  • Si un converge vers l\neq 0, alors, elle est équivalente à la suite constante égale à l.

[modifier] Opérations sur les équivalents

Voir l'article Opérations sur les équivalents.

[modifier] Exemples

[modifier] Remarque

On peut voir l'équivalence pour les suites comme un cas particulier de l'équivalence pour les fonctions.

[modifier] L'équivalence pour les fonctions

[modifier] Définition élémentaire

Soient I une partie de \mathbb{R}, a un point de l'adhérence de I, f et g des applications de I vers \mathbb{R}, g non nulle au voisinage de a.


On dit que f est équivalent à g au voisinage de a si et seulement si \lim_a \frac{f}{g} = 1.

On écrit alors f\sim g qui se lit « f est équivalent à g ». S'il y a une ambiguïté sur le point a qu'on considère, on utilise la notation plus précise : f\sim_a g

[modifier] Définition plus savante

Soit X un espace topologique, soit A une sous-partie de X. Soit a \in \overline{A} un élément de X adhérent à A. Cet espace est l'espace de départ des fonctions qu'on va étudier. En quelque sorte, c'est l'espace des paramètres.

Soit \mathbb{K}=\mathbb{R} ou \mathbb{C}, muni de sa valeur absolue usuelle. Soit E un \mathbb{K}-espace vectoriel normé, appelé à être l'espace des valeurs de nos fonctions.

Soient f et g deux fonctions de A dans E.

On dit que f et g sont équivalentes en a et on note f\sim_a g si et seulement si, il existe un voisinage V de a dans A \cup \{ a\} et une fonction \varepsilon définie sur V tels que :

  • \lim_a \varepsilon = 0
  • \forall x\in V\setminus \{a\}, f(x)=(1+\varepsilon(x))g(x)

[modifier] Remarques

[modifier] Propriétés

  • f \sim_a g \Rightarrow \exists V \in \mathcal{V}(a) | \forall x \in V\ \frac{f(x)}{g(x)} > 0, où \mathcal{V}(a) représente l'ensemble des voisinages de a.

En particulier, f et g ont même signe localement autour de a.

  • Si f ~ g au voisinage de a et que \lim_{a}f = l, l \in \overline {\mathbb R}, alors \lim_{a}g=l : deux fonctions équivalentes en a y ont la même limite.

[modifier] Opérations sur les équivalents

Voir l'article Opérations sur les équivalents.

[modifier] Voir aussi

Négligeable

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu