Interpolation lagrangienne
Un article de Wikipédia, l'encyclopédie libre.
En analyse numérique, les polynômes de Lagrange, du nom de Joseph Louis Lagrange, permettent d'interpoler une série de points par un polynôme qui passe exactement par ces points appelés aussi nœuds. Cette technique a été découverte par Edward Waring en 1779 et redécouverte plus tard par Leonhard Euler en 1783.
Étant donné qu'il n'existe qu'une seule interpolation pour un ensemble donné de points, en toute rigueur, il faut appeler cette méthode : Interpolation polynomiale.
Sommaire |
[modifier] Définition

On se donne n + 1 points (avec les xi distincts 2 à 2).
[modifier] Polynômes de Lagrange
Les polynômes de Lagranges associés aux points sont les polynômes définis par :
On a en particulier deux propriétés :
- lj est de degré n pour tout j
c'est-à-dire li(xi) = 1 et li(xj) = 0 pour
[modifier] Polynôme d'interpolation
Le polynôme défini par est l'unique polynôme de degré au plus n vérifiant L(xi) = yi pour tout i.
En effet et L est une combinaison linéaire de polynômes de degré n donc appartient à Kn[X].
Si un autre polynôme, Q, vérifie ces propriétés alors L − Q appartient à Kn[X] et s'annule en n + 1 points (les xk) donc est nul ce qui prouve l'unicité.
[modifier] Autre écriture
Posons . On a N(xi) = 0 et, en utilisant la formule de Leibniz
.
En particulier, comme tous les produits sont nuls en xk sauf un : .
Ainsi
On peut utiliser N pour traduire l'unicité : si Q vérifie Q(xi) = yi pour tout i alors Q − L s'annule aux points xi donc est un multiple de N. Il est donc de la forme Q(X) = L(X) + N(X).P(X) où P est un polynôme quelconque.
[modifier] Base de polynômes
On se donne n + 1 scalaires distincts . Pour tout polynôme P appartenant à Kn[X], si on pose yi = P(xi), P est le polynôme d'interpolation correspondant aux points : il est égal au polynôme L défini ci-dessus.
On a donc donc
forme une famille génératrice de Kn[X]. Comme son cardinal, n + 1, est égal à la dimension de l'espace elle en est une base.
Exemples : en choisissant P = 1 ou P = X on a
En fait c'est la base dont la base duale est la famille des formes linéaires définies par ui(P) = P(xi).
[modifier] Applications
- Ils peuvent être utilisés pour calculer le déterminant d'une matrice de Vandermonde
- Ils interviennent dans la démonstration du critère de diagonalisabilité par les polynômes annulateurs.
[modifier] Idée principale
Résoudre un problème d'interpolation conduit à inverser une matrice pleine de type matrice de Vandermonde. C'est un calcul lourd en nombre d'opérations. Les polynômes de Lagrange définissent une nouvelle base de polynômes qui permet de ne plus avoir une matrice pleine mais une matrice diagonale. Or, inverser une matrice diagonale est une opération instantanée.
[modifier] Voir aussi
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |