New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Synchrotron - Wikipédia

Synchrotron

Un article de Wikipédia, l'encyclopédie libre.

Le terme synchrotron désigne un type de grand instrument destiné à l'accélération à haute énergie de particules élémentaires.

Sommaire

[modifier] Principe de fonctionnement

Le synchrotron est un instrument permettant l'accélération à haute énergie de particules stables chargées. Il se compose principalement des éléments suivants :

  • un petit accélérateur, l'injecteur, qui prépare les particules à faible énergie ;
  • un anneau magnétique, maintenant les particules sur une trajectoire grossièrement circulaire (elle peut être interrompue par des sections rectilignes)
  • des cavités accélératrices destinées à augmenter – ou maintenir – l'énergie des particules tournant tout autour de l'anneau.
  • tout un ensemble d'appareillages annexes : alimentation électrique des aimants de courbure et des cavités, systèmes à ultravide, sondes de contrôle de position et de forme du faisceau, systèmes d'injection et d'éjection, systèmes de refroidissement, etc.

Les particules sont maintenues dans un vide extrêmement poussé, tout autour de l'anneau, à l'intérieur d'un tube de forme torique.

La caractéristique du synchrotron est que l'intensité du champ magnétique de l'anneau est maintenue adaptée de façon synchrone à l'énergie du faisceau de particules, afin de les maintenir sur une trajectoire fixe. Il peut en outre y avoir un second anneau, avec des particules tournant en sens inverse, afin de réaliser des collisions entre particules avec une énergie utilisable très élevée. Ce sont des collisionneurs.

On distingue principalement, par leurs contraintes de construction, deux types de synchrotrons – ou de collisionneurs :

Par contre, en raison de la faible masse des électrons, l'accélération occasionnée par la courbure de leur trajectoire génère une onde électromagnétique, le rayonnement synchrotron. Ce rayonnement est collecté à différents endroits du tore, les lignes de lumière. Chaque faisceau lumineux rencontre ensuite des lentilles, miroirs ou monochromateurs afin de sélectionner la gamme de longueurs d'ondes et de modifier les caractéristiques du faisceau (taille, divergence) qui sera utilisé dans l'expérience. « Au bout » de chaque ligne de lumière est monté un échantillon de matière servant de cible. Les photons (ou les électrons) éjectés lors de l'interaction du faisceau incident avec la cible sont détectés par des appareils de mesure ponctuels, linéaires ou bidimensionnels (caméra CCD, image plate). Suivant la taille de l'anneau, jusqu'à des dizaines d'expériences peuvent être menées simultanément.

La suite de cet article concernera les synchrotrons à électrons, considérés comme sources de lumière synchrotron.

[modifier] Fonctionnement

Schéma de principe du synchrotron
Schéma de principe du synchrotron

Le circuit que traversent les électrons est constitué d'un tube de quelques mm² dans lequel règne un vide poussé (10-10 torr, soit 10-13 atm). Ce vide est nécessaire pour éviter que les électrons ne heurtent des molécules d'air et ne soient ralentis.

Un paquet d'électrons, formant un faisceau fin comme un cheveu, est d'abord accéléré dans un accélérateur linéaire (Linac) jusqu'à une vitesse très proche de celle de la lumière. Puis le faisceau d'électrons passe dans un accélérateur circulaire appelé anneau d'accélération : le but de cet anneau est d'augmenter l'énergie des électrons jusqu'à atteindre environ 2 GeV (à des vitesses proches de celle de la lumière, une accélération change très peu la vitesse, mais influe sur l'énergie de la particule). Cette valeur de l'énergie de fonctionnement n'est qu'approximative, et dépend du synchrotron. Une fois que les électrons ont atteint l'énergie voulue, ils sont injectés dans l'anneau de stockage (beaucoup plus grand que l'anneau d'accélération, il atteint plusieurs centaines de mètres de circonférence), où ils vont faire des centaines de miliers de tours chaque seconde.

En une journée, les paquets l'électrons ont fait des milliards de tours dans l'anneau de stockage. A chaque tour, les électrons perdent un peu leur énergie, d'abord simplement par le rayonnement qu'ils émettent, et aussi, malgré le vide très poussé qui règne dans le tube, par les collisions qui se produisent entre les électrons et les molécules rédiduelles d'air. Pour compenser ce phénomène, des cavités accélératrices sont mises en route, environ trois fois par jour, pour réaccélérer les électrons et leur rendre leur énergie nominale.

[modifier] Aimants de courbure

L'anneau de stockage n'est pas parfaitement circulaire. Il est constitué d'une trentaine de segments rectilignes. A la jonction entre deux segments, on trouve un aimant de courbure. C'est un gros électro-aimant générant un champ magnétique entre 1 et 2 Tesla (et donc relié à un circuit de refroidissement efficace) orienté perpendiculairement à la trajectoire des électrons. Ce champ dévie les électrons et les aligne dans l'axe du segment suivant. Ainsi, la trajectoire des électrons est un polygône de forme quasiment circulaire.

Au niveau de ces aimants de courbure, les électrons subissent une accélération. D'après la théorie électromagnétique, cela se traduit par un rayonnement, dit rayonnement de freinage : c'est le rayonnement synchrotron ou bremsstrahlung. Ce rayonnement polychromatique de photons (dont le spectre est relativement large, et peut s'étendre de l'infrarouge lointain aux rayons X durs) est émis tangentiellement à la trajectoire des électrons. A cause d'effets relativistes, l'ouverture angulaire du faisceau est extrêmement faible (de l'ordre du milliradian). Le faisceau de photons, qui se sépare du faisceau d'électrons, est envoyé dans les lignes de lumière. Comme les électrons sont groupés en paquets dans l'anneau de stockage, le rayonnement synchrotron est émis sous forme d'impulsions de très courte durée.

[modifier] Eléments d'insertion

Pour obtenir des faisceaux de photons encore plus intenses, les synchrotrons de troisième génération contiennent ce que l'on appelle « éléments d'insertion ». Ce sont des aimants situés au milieu de chaque segment, en plus des aimants de courbure habituels.

Il en existe deux types : les wigglers, et les ondulateurs. Les deux consistent en des aimants fournissant un champ magnétique alternatif. Au niveau de ces éléments, les électrons subissent de nombreuses accélérations successives, ce qui crée un rayonnement synchrotron bien plus intense que celui créé par un simple aimant de courbure. On place évidemment une ligne de lumière au niveau de chaque élément d'insertion.

La différence entre un wiggler et un ondulateur réside simplement dans la période d'oscillation du champ alternatif (cette période n'est pas anodine, et a des conséquences en termes d'interférences et de largeur de spectre du faisceau synchrotron émis).

[modifier] Utilisations

La lumière synchrotron possède des caractéristiques exceptionnelles par comparaison aux sources de lumière classiques disponibles en laboratoire : son spectre d'émission s'étend de l'infrarouge aux rayons X avec une brillance (petite taille, intensité) exceptionnelle, le rayonnement est stable, pulsé, et avec une forte cohérence spatiale et temporelle. Il peut ainsi être comparé à un laser accordable sur une grande gamme de fréquences spectrales, depuis l'infrarouge lointain jusqu'aux rayons X durs pour les synchrotrons de 3e génération.

Il permet, par ses propriétés, l'accès à de nombreuses expériences, mises en œuvre sur des « lignes de lumière », véritables laboratoires fonctionnant en parallèle à partir d'un même anneau de stockage :

Ces expériences concernent des domaines très variés, allant de la chimie et la physique fondamentales, à l'analyse de matériaux archéologiques (voir par exemple L'interface patrimoine et archéologie de SOLEIL) ou d'organismes microscopiques. Elles peuvent également être employées à des fins industrielles.

[modifier] Utilisation du rayonnement synchrotron après monochromatisation

Le rayonnement synchrotron émis est polychromatique. Son utilisation principale est néanmoins comme source monochromatique, en plaçant, entre le dispositif expérimental et la source de lumière synchrotron, un monochromateur (cristal diffracteur, réseau). Les conditions de diffractions données par la loi de Bragg nous dit en effet que selon l'angle d'incidence du faisceau sur un cristal, on obtient un faisceau d'une longueur d'onde désirée. La longueur d'onde obtenue peut être variée très précisément, notamment pour mesurer l'évolution de l'absorption d'un échantillon au voisinage d'un seuil donné et en déduire des informations chimiques sur l'élément étudié dans le matériau.

[modifier] Utilisation directe de la source polychromatique

La polychromaticité est également employée directement pour faire des expériences de diffraction de Laue en faisceau blanc, de l'absorption de rayons X rapide à l'aide d'un cristal courbe, de la spectromicroscopie infrarouge à transformée de Fourier à l'aide d'un interféromètre de Michelson.

[modifier] Les synchrotrons dans le monde

[modifier] Quelques synchrotrons en fonctionnement…

[modifier] … quelques synchrotrons fermés…

  • en France : ACO (Anneau de Collision d'Orsay), SUPER-ACO et DCI (Dispositif de Collision dans l'Igloo) ([13]) dont les noms évoquent bien leur utilisation initiale comme collisionneurs, fermés en décembre 2003.
  • en Allemagne : BESSY I (démantelé en 1997), dotation de l'Allemagne à la communauté scientifique du Moyen-Orient en Jordanie (Sesame [14]).

[modifier] … et quelques synchrotrons en construction

  • synchrotron espagnol : ALBA ([15], ouverture prévue : 2010)
  • synchrotron anglais : DIAMOND ([16], ouverture prévue : début 2007)


Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Portail de la chimie – Accédez aux articles de Wikipédia concernant la chimie.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu