Un article de Wikipédia, l'encyclopédie libre.
- Pour consulter l'article plus général, voir théorie du chaos.
Le théorème KAM est un théorème de mécanique classique dans sa formulation hamiltonienne. Il doit son nom aux initiales de trois mathématiciens : Kolmogorov, Arnold et Moser. Conjecturé par Kolmogorov en 1954, il fut démontré rigoureusement quelques temps après et séparément par Arnold et Moser, ces deux auteurs utilisant des hypothèses de régularité sur le hamiltonien un peu différentes.
L'importance de ce théorème vient du fait qu'on pensait autrefois que l'hypothèse ergodique de Boltzmann s'appliquait à tous les sytèmes dynamiques non-intégrables. Une première mise en défaut de cette hypothèse fut obtenue en 1953 avec le résultat de l'expérience de Fermi-Pasta-Ulam. Le théorème KAM nous apprend de façon rigoureuse que la perturbation d'un système intégrable ne conduisait pas nécessairement à un sytème ergodique, mais que des tores invariants pouvaient subsister dans des régions de mesures finies de l'espace des phases, correspondant à des ilôts où la dynamique du système perturbé reste quasi-périodique.
- Barbara Burke-Hubbard & John Hubbard ; Loi et ordre dans l'univers : le théorème KAM, Pour La Science 188 (Juin 1993) 74-82.
- Vladimir I. Arnold & André Avez ; Ergodic Problems of Classical Mechanics, Advanced Book Classics, Pearson Addison Wesley (Mai 1989) ASIN : 0201094061.
- Vladimir I. Arnold ; Mathematical Methods of Classical Mechanics, Springer-Verlag (2ème édition-1989) ISBN : 0-387-96890-3. Une synthèse de l'état de l'art en mécanique analytique (formalismes Lagrangien & Hamiltonien) avec l'accent mis sur l'interprétation géométrique de ces formalismes, par l'un des plus brillants mathématiciens du domaine. A partir du second cycle universitaire.
- Vladimir I. Arnold, V.V. Kozlov & A.I. Neishtadt ; Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Springer-Verlag (2ème édition-1993).
- Henk W. Broer ; KAM Theory: The Legacy of Kolmogorov's 1954 Paper, Bulletin of the American Mathematical Society 41(4) (2004), 507-521. Texte disponible en ligne.