Goldbach's conjecture
From Wikipedia, the free encyclopedia
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Expressing a given even number as a sum of two primes is called a Goldbach partition of the number. For example,
- 4 = 2 + 2
- 6 = 3 + 3
- 8 = 3 + 5
- 10 = 3 + 7 = 5 + 5
- 12 = 5 + 7
- 14 = 3 + 11 = 7 + 7
- etc.
Contents |
[edit] Origins
On 7 June 1742, the Prussian mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII) [1] in which he proposed the following conjecture:
- Every integer greater than 2 can be written as the sum of three primes.
He considered 1 to be a prime number, a convention subsequently abandoned. A modern version of Goldbach's original conjecture is:
- Every integer greater than 5 can be written as the sum of three primes.
Euler, becoming interested in the problem, answered by noting that this conjecture would follow from a stronger version,
- Every even integer greater than 2 can be written as the sum of two primes,
adding that he regarded this a fully certain theorem ("ein ganz gewisses Theorema"), in spite of his being unable to prove it.
The former conjecture is today known as the "ternary" Goldbach conjecture, the latter as the "strong" or "binary" Goldbach conjecture. The conjecture that all odd numbers greater than 7 are the sum of three odd primes is called the "weak" Goldbach conjecture. Both questions have remained unsolved ever since, although the weak form of the conjecture is much closer to resolution than the strong one.
[edit] Heuristic justification
The majority of mathematicians believe the conjecture (in both the weak and strong forms) to be true, at least for sufficiently large integers, mostly based on statistical considerations focusing on the probabilistic distribution of prime numbers: the bigger the number, the more ways there are available for that number to be represented as the sum of two or three other numbers, and the more "likely" it becomes that at least one of these representations consists entirely of primes.
A very crude version of the heuristic probabilistic argument (for the strong form of the Goldbach conjecture) is as follows. The prime number theorem asserts that an integer m selected at random has roughly a chance of being prime. Thus if n is a large even integer and m is a number between 3 and n/2, then one might expect the probability of m and n-m simultaneously being prime to be
. This heuristic is non-rigorous for a number of reasons, for instance it assumes that the events that m and n − m are prime are statistically independent of each other. Nevertheless, if one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly
Since this quantity goes to infinity as n increases, we expect that every large even integer has not just one representation as the sum of two primes, but in fact has very many such representations.
The above heuristic argument is actually somewhat inaccurate, because it ignores some correlations between the likelihood of m and n − m being prime. For instance, if m is odd then n − m is also odd, and if m is even, then n − m is even, a non-trivial relation because (besides 2) only odd numbers can be prime. Similarly, if n is divisible by 3, and m was already a prime distinct from 3, then n − m would also be coprime to 3 and thus be slightly more likely to be prime than a general number. Pursuing this type of analysis more carefully, Hardy and Littlewood in 1923 conjectured (as part of their famous Hardy-Littlewood prime tuple conjecture) that for any fixed c ≥ 2, the number of representations of a large integer n as the sum of c primes with
should be asymptotically equal to
where the product is over all primes p, and γc,p(n) is the number of solutions to the equation in modular arithmetic, subject to the constraints
. This formula has been rigorously proven to be asymptotically valid for c ≥ 3 from the work of Vinogradov, but is still only a conjecture when c = 2. In the latter case, the above formula simplifies to 0 when n is odd, and to
when n is even, where Π2 is the twin prime constant
This asymptotic is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable difficulty.
[edit] Rigorous results
For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be verified directly. For instance, N. Pipping in 1938 laboriously verified the conjecture up to . With the advent of computers, many more small values of n have been checked; T. Oliveira e Silva is running a distributed computer search that has verified the conjecture up to
(as of June 2006).
The weak Goldbach conjecture is fairly close to resolution. In 1923, Hardy and Littlewood showed that under the assumption of the generalized Riemann hypothesis (GRH), every sufficiently large odd number was the sum of three primes. In 1937, Ivan Vinogradov removed the hypothesis of GRH and proved that every sufficiently large odd number n is the sum of three primes. In 1939 Vinogradov's student, K. G. Borozdkin, quantified the phrase sufficiently large, showing that would suffice. This bound has since been lowered a number of times, with the currently best known result due to Liu Ming-Chit and Wang Tian-Ze in 2002, who proved that every odd number
is the sum of three primes. In principle, this leaves only a finite number of cases to check, but this is far too large a number to be handled by computer search (which, as mentioned earlier, has only reached as far as
for the strong Goldbach conjecture, and not much further than that for the weak Goldbach conjecture). In 1997 Deshoulliers, Effinger, Te Riele, and Zinoviev were able to close the gap and prove that all odd numbers (greater than 5) are the sum of three primes, but only by assuming GRH again.
The strong Goldbach conjecture is much more difficult. The work of Vinogradov in 1937 and Theodor Estermann (1902-1991) in 1938 showed that almost all even numbers can be written as the sum of two primes (in the sense that the fraction of even numbers which can be so written tends towards 1). In 1930, Lev Schnirelmann proved that every even number n ≥ 4 can be written as the sum of at most 300,000 primes. This result was subsequently improved by many authors; currently, the best known result is due to Olivier Ramaré, who in 1995 showed that every even number n ≥ 4 is in fact the sum of at most six primes.
Chen Jingrun showed in 1973 using the methods of sieve theory that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes)[1]—e.g., 100 = 23 + 7·11.
In 1975, Hugh Montgomery and Robert Charles Vaughan showed that "most" even numbers were expressible as the sum of two primes. More precisely, they showed that there existed positive constants c,C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN1 − c exceptions. In particular, the set of even integers which are not the sum of two primes has density zero.
Roger Heath-Brown and Jan-Christoph Schlage-Puchta showed in 2002 that every sufficiently large even integer is a sum of two primes and exactly 13 powers of 2.[2]
One can pose similar questions when primes are replaced by other special sets of numbers, such as the squares. For instance, it was proven by Lagrange that every positive integer is the sum of four squares. See Waring's problem.
[edit] Trivia
- Doug Lenat's Automated Mathematician rediscovered Goldbach's Conjecture in 1982. This is considered one of the earliest demonstrations that artificial intelligences are capable of scientific discovery.
- To generate publicity for the book Uncle Petros and Goldbach's Conjecture by Apostolos Doxiadis, British publisher Tony Faber offered a $1,000,000 prize for a proof of the conjecture in 2000, if a proof was submitted before April 2002. The prize was never claimed.
- The television drama Lewis featured a mathematics professor at Oxford University who had won the Fields medal for his work on Goldbach's conjecture, which was a main plot feature.
- Science fiction author Stephen Baxter penned a short story Planck Zero in which the Goldbach Conjecture features prominently.
[edit] Attempted proofs
As with many famous conjectures in mathematics, there are a number of purported proofs of the Goldbach conjecture, none of which are currently accepted by the mathematical community.
Because it is easily understood by laymen, Goldbach's conjecture is a popular target for pseudomathematicians who attempt to prove it, sometimes even disprove it, using only high-school-level mathematics. It shares this fate with the four-color theorem and Fermat's last theorem, each of which also has an easily stated problem, but a current proof which is extraordinarily elaborate.
It is possible that Goldbach's conjecture can yield to simple methods, but given the amount of professional attention paid to the conjecture, it is unlikely that a proof or a counter-example will be easy to find.
[edit] External links
- Goldbach's original letter to Euler - PDF format
- Goldbach's conjecture, part of Chris Caldwell's Prime Pages.
- A million-dollar maths question. Article by Anjana Ahuja in The Times, March 16, 2000.
- Goldbach conjecture verification, Tomás Oliveira e Silva's distributed computer search.
- Online tool to test Goldbach's conjecture on submitted integers.
- Goldbach Weave showing a graphical representation of Goldbach's conjecture.
- Elementary proof of a very weak form of Goldbach's conjecture proves that the first N odd primes give at least 2N-1 unique even integers.
[edit] References
- ^ J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157--176.
- ^ D. R. Heath-Brown, J. C. Puchta, Integers represented as a sum of primes and powers of two. The Asian Journal of Mathematics, 6 (2002), no. 3, pages 535-565.
[edit] Further reading
- J.-M. Deshouillers; G. Effinger; H. te Riele; D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99--104 (electronic).
- Apostolos Doxiadis: Uncle Petros and Goldbach's Conjecture. ISBN 1-58234-128-1.
- H.L. Montgomery, Vaughan, R. C., The exceptional set in Goldbach's problem. Collection of articles in memory of Jurii Vladimiroviv Linnik. Acta Arith. 27 (1975), 353--370.