New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Kétmintás t-próba - Wikipédia

Kétmintás t-próba

A Wikipédiából, a szabad lexikonból.

Az kétmintás t-próba a statisztikai hipotézisvizsgálatok közül a paraméteres próbák közé tartozik. A próba azt vizsgálja, hogy két külön mintában egy-egy valószínűségi változó átlagai egymástól szignifikánsan különböznek-e.


Tartalomjegyzék

[szerkesztés] A próba alkalmazásának feltételei

  • a vizsgált valószínűségi változók normális eloszlásúak
  • a vizsgált valószínűségi változók intervallum vagy arányskálán mértek
  • a vizsgált valószínűségi változók szórásai megegyeznek (ám a kétmintás u-próbától eltérően itt nem kell ismernünk az elméleti értéküket, elegendő becsülnünk a minták alapján)
  • a vizsgált valószínűségi változók függetlenek

[szerkesztés] A próba nullhipotézise

Nullhipotézis: a két mintában a két átlag statisztikai szempontból megegyezik.

Alternatív hipotézis: a két mintában a két átlag statisztikai szempontból nem egyezik meg.

A "statisztikai szempontból" kifejezés itt arra utal, hogy az eltérés a két átlag között olyan minimális, hogy pusztán csak a véletlen ingadozásnak tulajdonítható (ekkor a két átlag statisztikai szempontból azonosnak tekinthető), vagy jelentősen nagyobb, mint ami a véletlennel magyarázható (ekkor a két átlag statisztikai szempontból nem tekinthető azonosnak).

Valójában a fenti két hipotézis precíz matematikai megfogalmazása a következő.

  • H0: Az X és Y valószínűségi változók várható értékei megegyeznek, (E(X) = E(Y)).
  • H1: Az X és Y valószínűségi változók várható értékei nem egyeznek meg, (E(X) ≠ E(Y)).

[szerkesztés] A próbastatisztika

A kétmintás t-próba próbastatisztikája

t =  \frac {\overline x- \overline y} {\sqrt { (n-1){s_x^*}^2 + (m-1){s_y^*}^2 } } \cdot \sqrt { \frac {nm(n+m-2)} {n+m} }

ahol

  • \overline x az egyik valószínűségi változó átlaga a mintájában,
  • \overline y a másik valószínűségi változó átlaga a mintájában,
  • sx* az egyik valószínűségi változó korrigát szórása,
  • sy* a másik valószínűségi változó korrigát szórása,
  • n az egyik minta elemszáma és
  • m a másik minta elemszáma.

[szerkesztés] A próba végrehajtásának lépései

  1. A próba alkalmazhatóságának feltétele a szórások egyezése, amit külön statisztikai próba, az F-próba segítségével ellenőrzünk. Csak akkor alkalmazhatjuk a kétmintás t-próbat ha az F-próba a szórások között szignifikáns különbséget nem tud kimutatni. Ha szignifikáns különbséget mutat ki, akkor a kétmintás t-próbát nem lehet alkalmazni, de helyette alkalmazható az ugyanezt a nullhipotézist vizsgáló Welch-próba, ami nem igényli a szórások egyezését.
  2. Az t próbastatisztika értékének kiszámítása.
  3. A p szignifikancia szint megválasztása. (Ez a legtöbb vizsgálat esetén 0,05 vagy 0,01.)
  4. A p szignifikancia szinttől függő tp érték kiválasztása a próbának megfelelő táblázatból. A táblázat jelen esetben a t-eloszlás táblázata, mely eloszlásra szoktak úgy is utalni, mint Student-eloszlás, illetve Student-féle t-eloszlás. A táblázat kétdimenziós, a p szignifikancia szint és az f szabadsági fok ismeretében azonnal megkapjuk a táblázatbeli tp értéket. Az f szabadsági fokot a kétmintás t-próba esetén az f = n + m - 2 képlettel számítjuk.
  5. A nullhipotézisre vonatkozó döntés meghozása.
    • Ha |t| ≥ tp, akkor a nullhipotézist elvetjük, az alternatív hipotézist tartjuk meg, és az eredményt úgy interpretáljuk, hogy a két mintában a valószínűségi változók átlagai szignifikánsan eltérnek egymástól (p szignifikancai szint mellett).
    • Ha |t| < tp, akkor a nullhipotézist megtartjuk, amit úgy interpretálunk, hogy a kétmintás t-próba nem mutat ki szignifikáns különbséget a két mintában a valószínűségi változók átlagai között (p szignifikancai szint mellett).

[szerkesztés] Példa

Biológusok egy vizsgálatban azzal a feltételezéssel élnek, hogy a sivatagi iramszarvas számára kedvezőbb életkörülményeket jelent ha van lehetőségük hűs vízben lubickolni, amikor csak kedvük tartja, mint ha ugyanerre nincs lehetőségük. Ennek a hipotézisnek a tesztelésére 19 iramszarvast különítenek el egy hatalmas csordából, és véletlenszerűen besorolják őket két csoportba. Az egyik csoportba 8 a másikba 11 egyed kerül. A két csoport egyedeit minden életfeltétel tekintetében azonos körülmények között tartják, attól eltekintve, hogy az egyik csoportnak rendelkezésére áll egy kellemes kis medence is, melyben bármikor fürdőzhetnek, a másiknak pedig nem. Három hónapnyi elkülönítés után a sivatagi iramszarvasok súlyát lemérik. Azzal a feltételezéssel élnek, hogy a medence mellett tartott szarvasok testsúlya jobban gyarapodott, mint a másik csoportté. (Köztudott, hogy a sivatagi iramszarvasok erőnlétének egyik legpontosabb jelzője a testsúlyuk: a súlyosabb iramszarvasok mindig egészségesebbek és erősebbek).

A medencés csoport szarvasainak testsúlya kg-ban:

52; 57; 62; 55; 64; 57; 56; 55.

A medencét nélkülöző csoport szarvasainak testsúlya kg-ban:

41; 34; 33; 36; 40; 25; 31; 37; 34; 30; 38.

Arra kíváncsiak a biológus kutatók, hogy a két csoport átlagos testsúlya közötti különbség szignifikánsan nagynak mondható, vagy nem nagyobb annál, mint amit a puszta véletlennel is magyarázható. Felteszik, hogy a szarvasok testsúlya normális eloszlást követ. Ez - bár igen reálisnak hangzik - ellenőrizhető más statisztikai próbákkal, úgynevezett normalitásvizsgálatokkal. Az átlagsúlyok összehasonlítására kétmintás t-próbát alkalmaznak.

Első lépésben ellenőrzik, hogy a két mintában a testsúly szórása azonosnak tekinthető-e. Erre F-próbát alkalmaznak, ami nem mutat ki, szignifikáns különbséget a szórások között (ld. F-próba Példája), így a kétmintás t-próba alkalmazásának feltételei adottak. Az F-próbához is a korrigált szórások négyzetét kell kiszámítani, ami ebben a két mintában sx*2 = 15,36, és sy*2 = 21,87. A "medencés" iramszarvasok átlagos testsúlya \overline x = 57,25, míg a másik csoportnál ugyanez a paraméter \overline y = 34,45, a minták nagysága n = 8 és m = 11. A próbastatisztika értéke ennek megfelelően

\begin{matrix} t &=& \frac {\overline x- \overline y} {\sqrt { (n-1){s_x^*}^2 + (m-1){s_y^*}^2 } } \cdot \sqrt { \frac {nm(n+m-2)} {n+m} } \\ \ &  =& \frac {57,25- 34,45} {\sqrt { 7 \cdot 15,36 + 10 \cdot 21,87 } } \cdot \sqrt { \frac {8 \cdot 11(8+11-2)} {8+11} } \approx 11,12 \end{matrix}

A szignifikancia szintet p = 0,05-nek véve és az f = n + m - 2 = 17 szabadsági fok ismeretében a t-táblázatban a t0,05 = 2,11 értéket találják a kutatók, így


t ≈ 11,12 miatt t > 11,11 > 2,11 = t0,05


azaz |t| ≥ t0,05 teljesül.


Tehát a nullhipotézist elvetik, a kétmintás t-próba szerint a medencés környezetben tartott sivatagi iramszarvasok átlagos testsúlya 3 hónap alatt szignifikánsan magasabb lett (p = 0,05-ös szgnifikancia szint mellett), mint az ugyanolyan körülmények között tartott, de medencét nélkülöző iramszarvasoké.

[szerkesztés] A próba matematikai háttere

A próba matematikai hátterének legfontosabb gondolata, hogy bármely X és Y független, normális eloszlású valószínűségi változóra vett X1, X2, ... Xn illetve Y1, Y2, ... Xm minták esetén az

\overline X= \frac{1}{n} \sum_{i=1}^{n} X_i,  \qquad \overline Y= \frac{1}{m} \sum_{j=1}^{m} X_,

valamint az

s^*_X= \sqrt { \frac {\sum_{i=1}^n (X_i-\overline X)^2} {n-1} }, \qquad s^*_Y= \sqrt { \frac {\sum_{i=1}^m (Y_i-\overline Y)^2} {m-1} }

jelölésekkel élve megmutatható, hogy a

t =  \frac {\overline X- \overline Y} {\sqrt { (n-1){s_X^*}^2 + (m-1){s_Y^*}^2 } } \cdot \sqrt { \frac {nm(n+m-2)} {n+m} }

valószínűségi változó (n + m – 2) szabadsági fokú t-eloszlást követ.

Emiatt az (n + m – 2) szabadsági fokú t-eloszlás ismeretében bármilyen 1 > p > 0 esetén meg lehet határozni azt az tp értéket, melyre

1-p = \bold P \left( -t_p < \frac {\overline X- \overline Y} {\sqrt { (n-1){s_X^*}^2 + (m-1){s_Y^*}^2 } } \cdot \sqrt { \frac {nm(n+m-2)} {n+m} } < t_p  \mid \ H_0 \right).

Ez azt jelenti, hogy ha igaz a nullhipotézis, akkor a t próbastatisztika értéke 1-p valószínűséggel a (-tp, tp) intervallumba esik.


[szerkesztés] Megjegyzések

  • A kétmintás t-próba bizonyos tekintetben az kétmintás u-próba párja, mindkettő ugyanazt a nullhipotézist vizsgálja ugyanolyan adottságok mellett. Ugyanakkor az alkalmazás feltételeiben nem esik teljesen egybe a két próba és a próbastatisztikák képletei is nagy különbséget mutatnak. A kétmintás t-próba és a kétmintás u-próba között tehát nem olyan nagy a hasonlóság, mint a egy egymintás t- és u-próba között volt.
  • A szakirodalom nem teljesen egységes annak tekintetében, hogy a nullhipotézis elvetéséről vagy megtartásáról szóló döntésben az |t| és tp közötti két egyenlőtlenség közül melyiknél engedi meg az egyenlőséget. Ennek gyakorlati jelentősége nem igazán van, az alkalmazások során nagyon ritkán adódik, hogy a kiszámított próbastatisztika pontosan egybeesen a táblázat beli értékkel. Ha esetleg mégis így alakul, akkor az eredmény úgy interpretálható, hogy a nullhipotézis elvetése esetén a kockázat pontosan megegyezik a szignifikancia szinttel, s innen a kutató (és a tudós társadalom) szája ízétől függ, hogy ebben inkább a nullhipotézis elvetésének, vagy inkább a nullhipotézis megtartásának zálogát látja.
  • Érdemes megfigyelni az óvatos fogalmazást a nullhipotézis megtartása esetén. Az általunk meghatározott p szignifikancia szint az elsőfajú hiba elkövetésének valószínűségét adja meg. Ha el tudom vetni a nullhipotézist, akkor ekkora kockázatot vállalok arra nézve, hogy esetleg hiba elvetni. Amennyiben viszont nem tudom elvetni a nullhipotézis, akkor elsőfajú hibát biztosan nem fogok elkövetni, ám elkövethetek másodfajú hibát, melynek kockázatáról semmit nem mond a próba. Ez indokolja, hogy ha a nullhipotézist megtartjuk, akkor nem azt mondjuk, hogy nincs szignifikáns különbség a két átlag között, hanem hogy a kétmintás t-próba nem tudott szignifikáns különbséget kimutatni (ami ettől még lehet, hogy van).
  • A próbastatisztika képletét szokták a kövektező formában is megadni.
t =  \frac {\overline x- \overline y} { \sqrt {\frac{(n-1){s_x^*}^2+(m-1){s_y^*}^2}{n+m-2}} \cdot \sqrt {\frac{1}{n}+\frac{1}{m}} }
Ez a fenti képlettel ekvivalens.

[szerkesztés] Források

  • Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.
  • Lukács O. (2002): Matematikai statisztika. Műszaki Könyvkiadó, Budapest.
  • Michaletzky Gy. – Mogyoródi J. (1995): Matematikai statisztika, Nemzeti Tankönyvkiadó, Budapest.
  • Michelberger P. – Szeidl L. – Várlaki P. (2001): Alkalmazott folyamatstatisztika és idősor-analízis. Typotex Kiadó, Budapest.
  • Vargha A. (2000): Matemtatikai statisztika pszchológiai, nyelvészeti és biológiai alkalmazásokkal. Pólya Kiadó, Budapest.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu