Konvex függvény
A Wikipédiából, a szabad lexikonból.
A matematikában, közelebbről a matematikai analízisben egy intervallumon értelmezett, valós értékű függvényt konvexnek nevezünk ha a görbéje feletti végtelen síktartomány konvex alakzat, azaz ha egy szakasz két végpont benne van a síktartományban, akkor a szakasz összes pontja is. Egy másik szemléletes megfogalmazás, hogy akkor konvex egy függvény, ha érintője mindenütt a függvénygörbe alatt halad.
Egy az Rn egy konvex részhalmazán értelmezett, valós értékű függvény esetén is szokás konvexitásról beszélni, ennek formális megfogalmazása lentebb található. Lényegében itt is arról van szó, hogy a függvény grafikonja fölötti térrész (R2 R esetben) konvex.
[szerkesztés] Általános definíció
Az f: I R intervallumon értelmezett valós változójú függvény konvex, ha a függvénygörbe két pontját összekötő húr a függvénygörbe fölött halad, azaz tetszőleges a < b pontra az I-ből és t ∈ [0,1]-re:
f konkáv, ha a függvénygörbe két pontját összekötő húr a függvénygörbe alatt halad, azaz ha tetszőleges a < b pontra az I-ből és t ∈ [0,1]-re:
Szigorúan konvexnek illetve szigorúan konkávnak nevezzük f-et, ha a fenti formulában csak akkor teljesülhet egyenlőség, ha t= 0 vagy 1.
A többváltozós esetben a fenti formulák változatlanul fennmaradnak, csak a és b az értelmezési tartományba eső tetszőleges szakasz két végpontja.
[szerkesztés] Konvexitás és differenciálhatóság
Ha az f: I R intervallumon értelmezett, valós függvény differenciálható, akkor ennek konvex tulajdonsága még a következőképpen is megfogalmazható: minden I-beli x, u számpár esetén
illetve konkáv, ha minden I-beli x, u számpár esetén:
Azaz az érintő egyenes (mely differenciálható függvények esetében értelmezhető csak) konvex esetben mindig a függvénygörbe alatt, konkáv esetben felett halad. Ekkor rendre a függvény és első Taylor-polinomja közötti f - T1,uf ≧ 0 illetve f - T1,uf ≦ 0 egyenlőtlenségről beszélünk (tetszőleges u ∈ I pontnál).
Amennyiben a függvény kétszer differenciálható, akkor fenáll a következő
Tétel – A konvexitás (konkavitás) jellemzése – Az f: I R intervallumon értelmezett kétszer differenciálható függvény pontosan akkor konvex (konkáv), ha a második deriváltja mindenhol nemnegatív (nempozitív).
- f konvex
- f konkáv