Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Mértéktérelmélet - Wikipédia

Mértéktérelmélet

A Wikipédiából, a szabad lexikonból.

A mértékelmélet vagy másnéven mértéktérelmélet a térelméletek egy gyakran használt, speciális fajtája, ezekben a tér (téridő) minden pontjában definált fizikai mennyiség (mező) pontról-pontra („lokálisan”) eleget tesz valamilyen „belső” (azaz, nem a téridőkoordinátákban, hanem a mező változóira elvégezhető) szimmetriacsoporttal jellemezhető szimmetriának, azaz ha elvégezzük a mértéktranszformációt (úgy, hogy a mező folytonosan differenciálható marad), akkor az elméletből számolható fizikai mennyiségek nem változnak.

Tartalomjegyzék

[szerkesztés] Megmaradó mennyiségek

Ez a szimmetria a rendszer leírásában valamifajta „redundanciát”, „belső szabadsági fok” meglétét jelenti. Ha egy rendszerre fenn áll valamilyen szimmetria, akkor a Noether-tételből következik valamilyen megmaradó mennyiség („Noether-töltés”) létezése.

[szerkesztés] Kommutatív mértékcsoport

Mértéktérelméletre tipikus példa az elektrodinamika mértékszabadsága, ami az elektrosztatika esetére azt jelenti, hogy az elektrosztatikus tér potenciálja csak egy konstans erejéig van meghatározva. A potenciálból származtatható mérhető fizikai mennyiség, a feszültség ugyanis a potenciálok különbsége. A mágneses térerősségpotenciálhoz pedig tetszőleges örvénymentes vektormező adható. A Maxwell-egyenletek azután egy általánosabb mértékszabadságnak tesznek eleget, ahol egy tetszőleges megválasztható hely- és időfüggésű mértékmező deriváltjai adhatók hozzá meghatározott módon a skalár- és vektorpotenciálhoz.

Az elektrodinamika relativisztikus megfogalmazásában, amivel már a Maxwell-egyenletekkel történő leírás is ekvivalens, e két transzformációt egyetlen, a 4-dimenziós térerősségtenzoron végzett transzformáció írja le. E szimmetriából következik az elektromos töltés megmaradása. Az elektrodinamika mértékcsoportja az U(1), mivel ez kommutatív (Abel-csoport), ezért az elmélet lineáris, ezért analítikusan jól kezelhető. A kvantumelektrodinamika esetében a linearitás és a csatolási állandó kicsi volta miatt a perturbációszámítás kiválóan működik, ellentétben a Yang-Mills elméletekkel.

[szerkesztés] Mértékinvariancia és kölcsönhatás

A mértékinvariancia a klasszikus (nemkvantumos) elektrodinamikában az elektromágneses teret leíró potenciálterek tulajdonsága. A kvantumelektrodinamika ezek kvantálásával írja le a fotont. Kiterjeszti a mértékszabadságot az anyagi részecskéket leíró terekre is, és a lokalitás mekövetelése miatt új, kölcsönhatási kifejezések lépnek fel az anyagi és a sugárzási tér, azaz a foton és az elektron között. Azaz a foton, mint a sugárzási tér kvantumrészecskéje az elektromágneses kölcsönhatás közvetítő részecskéje.

Az U(1)-csoport transzformációi egydimenziós téren, egy komplex fázistéren hatnak, ezért egyféle töltés (előjeles és additív a kommutativitás miatt) a megmaradó mennyisége. A csoport transzformációi maguk is egy egydimenziós teret feszítenek ki, mert egyféle töltés közötti átmeneteket írnak le, ezért egyféle kölcsönhatás, egyféle közvetítő részecske létezik, a foton.

[szerkesztés] Nemkommutatív mértékcsoport

A nemábeli (nem kommutatív) mértékcsoporton alapuló, s emiatt nemlineáris lokális mértékelméleteket Yang-Mills elméleteknek nevezik. Ezen mértéktérelméletek bizonyos kvantált változatai, például az SU(2)×U(1) mértékcsoportra épülő elektrogyenge kölcsönhatás elmélete, illetve az SU(3) mértékcsoportra épülő kvantum-színdinamika elmélete, kísérletileg és elméletileg is rendkívül sikereseknek bizonyultak a természet leírásában. Ezért a fizikusok az összes kölcsönhatást együttesen leírni képes egyesített elmélet kutatásában a mértéktérelméleteket alapvető jelentőségűeknek tartják. (Lásd húrelméletek, szuperszimmetrikus elméletek )

[szerkesztés] Mértékinvariancia és kölcsönhatás

A mértékcsoport nemábeli jellege miatt itt - az általános kvantumtérelméletben - a sugárzási tér önkölcsönhatása is megjelenik. Az anyagi terekre megkövetelt mértékszabadság miatt a kvantumelektrodinamikához hasonló kölcsönhatási tagok jelennek meg a sugárzási és anyagi terek között. A mértékcsoportot az anyagi terek közötti transzformációként definiáljuk - ez a mértékcsoport definiáló ábrázolása - és annyiféle töltés, vagy inkább annyi dimenziójú a töltés, amekkora a definiáló ábrázolás dimenziója. SU(n) csoport esetén ez n, azaz az SU(3) által definiált kvantumszíndinamika három töltésállapottal, három színnel ruházhatja fel az anyagi tereket, a kvarkokat.

Három töltésállapot között 3×3-1=8 - egyet a triviális, azaz mindent sajátmagába vivő átmenet elhagyása miatt kell levonni - transzformáció lehetséges, azaz a transzformációs teret - amit adjungált ábrázolásnak nevezünk - nyolc alaptranszformáció (generátor) feszíti ki. Ezek mindegyikének megfelel egy kölcsönhatási részecske, amit a foton analógiájára kapunk a sugárzási tér kvantálásakor. A kvantumszíndinamika esetén ez a nyolc gluon.

A gyenge kölcsönhatás mértékcsoortja, az SU(2) a kétdimenziós gyenge izospin-téren definiálható és 2&time;2-1=3 közvetítő részecskéje, a három gyenge mértékbozon, a Z-bozon és a két W-bozon közvetíti a kölcsönhatást. Ami így nem pontos, mert ha csak így lenne, akkor pl. a W-bozonoknak nem lenne elektromos töltésük, pedig van. Valójában az elektrogyenge kölcsönhatás mértékcsoportja az SU(2)×U(1)Y, s ez spontán sérül a Higgs-mechanizmus útján az U(1)Q csoportra,- azaz a két U(1) csoport nem azonos – s eközben nyernek a végső, általunk megfigyelhető gyenge bozonok töltést.

[szerkesztés] Renormálhatóság

Gerardus 't Hooft általánosan bebizonyította a mértékelméletek renormálhatóságát.

[szerkesztés] Megjegyzések

Az általános relativitáselmélet is megfogalmazható a mértéktérelméletekhez hasonlóan, az ekvivalencia elve miatt ugyanis lokális szimmetria áll fönn az elméletet alapvetően jellemző metrikus tenzorra.

[szerkesztés] Külső hivatkozások

[szerkesztés] Angolul

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu