New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
List of small groups - Wikipedia, the free encyclopedia

List of small groups

From Wikipedia, the free encyclopedia

The following list in mathematics contains the finite groups of small order up to group isomorphism.

The list can be used to determine which known group a given finite group G is isomorphic to: first determine the order of G, then look up the candidates for that order in the list below. If you know whether G is abelian or not, some candidates can be eliminated right away. To distinguish between the remaining candidates, look at the orders of your group's elements, and match it with the orders of the candidate group's elements.

Contents

[edit] Glossary

The notations Zn and Dihn have the advantage that point groups in three dimensions Cn and Dn do not have the same notation. There are more isometry groups than these two, of the same abstract group type.

The notation G × H stands for the direct product of the two groups. Abelian and simple groups are noted. (For groups of order n < 60, the simple groups are precisely the cyclic groups Zn, where n is prime.) We use the equality sign ("=") to denote isomorphism.

The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.

In the lists of subgroups the trivial group and the group itself are not listed.

[edit] List of small non-abelian groups

See also the list of small abelian groups and the combined list below.

Note that e.g. "3 × Z2" means that there are 3 subgroups of type Z2 (NOT a left coset of Z2), while elsewhere the cross means direct product.

Order Group Subgroups Properties Cycle Graph
6 S3 = Dih3 Z3 , 3 × Z2 the smallest non-abelian group
8 Dih4 Z4, 2 × Dih2 , 5 × Z2 non-abelian
Quaternion group, Q8 = Dic2 3 × Z4 , Z2 non-abelian; the smallest Hamiltonian group
10 Dih5 Z5 , 5 × Z2 non-abelian
12 Dih6 = Dih3 × Z2 Z6 , 2 × Dih3 , 3 × Dih2 , Z3 , 7 × Z2 non-abelian
edit
A4 Z22, 4 × Z3, 3 × Z2 non-abelian; smallest group demonstrating that the converse of Lagrange's theorem is not true: no subgroup of order 6
Dic3 = the semidirect product of Z3 and Z4, where Z4 acts on Z3 by inversion Z2, Z3, 3 × Z4, Z6 non-abelian
14 Dih7 Z7 , 7 × Z2 non-abelian
16 Dih8 Z8 , 2 × Dih4 , 4 × Dih2 , Z4 , 9 × Z2 non-abelian
edit
Dih4 × Z2 2 × Dih4 , Z4 × Z2 , 2 × Z23, 7 × Z22 , 2 × Z4 , 11 × Z2 non-abelian
Generalized quaternion group, Q16 = Dic4   non-abelian
Q8 × Z2   non-abelian, Hamiltonian
The order 16 quasidihedral group   non-abelian
The order 16 modular group   non-abelian
The semidirect product of Z4 and Z4 where one factor acts on the other by inversion   non-abelian
The group generated by the Pauli matrices   non-abelian
G4,4   non-abelian

[edit] Combined list

Order Group Subgroups Properties Cycle graph
1 trivial group = Z1 = S1 = A2 - abelian; this and various other properties hold trivially
2 Z2 = S2 = Dih1 - abelian, simple, the smallest non-trivial group
3 Z3 = A3 - abelian, simple
4 Z4 Z2 abelian 
Klein four-group = Z2 × Z2 = Dih2 3 × Z2 abelian, the smallest non-cyclic group
5 Z5 - abelian, simple
6 Z6 = Z2 × Z3 Z2 , Z3 abelian
S3 = Dih3 Z3 , 3 × Z2 the smallest non-abelian group
7 Z7 - abelian, simple
8 Z8 Z4 , Z2 abelian
Z2 ×Z4 2 × Z4 , 3 ×Z2 , Dih2 abelian
Z2 × Z2 × Z2 = Dih2 × Z2 7 × Z2 × Z2 , 7 × Z2 abelian
Dih4 Z4, 2 × Dih2 , 5 × Z2 non-abelian
Quaternion group, Q8 = Dic2 3 × Z4 , Z2 non-abelian; the smallest Hamiltonian group
9 Z9 Z3 abelian
Z3 × Z3 4 × Z3 abelian
10 Z10 = Z2 × Z5 Z5 , Z2 abelian
Dih5 Z5 , 5 × Z2 non-abelian
11 Z11 - abelian, simple
12 Z12 = Z4 × Z3 Z6 , Z4 , Z3 , Z2 abelian
Z2 × Z6 = Z2 × Z2 × Z3 = Dih2 × Z3 3 × Z6, Z3, Dih2, 3 × Z2 abelian
Dih6 = Dih3 × Z2 Z6 , 2 × Dih3 , 3 × Dih2 , Z3 , 7 × Z2 non-abelian
edit
A4 Z22, 4 × Z3, 3 × Z2 non-abelian; smallest group demonstrating that the converse of Lagrange's theorem is not true: no subgroup of order 6
Dic3 = the semidirect product of Z3 and Z4, where Z4 acts on Z3 by inversion Z2, Z3, 3 × Z4, Z6 non-abelian
13 Z13 - abelian, simple
14 Z14 = Z2 × Z7 Z7 , Z2 abelian
Dih7 Z7 , 7 × Z2 non-abelian
15 Z15 = Z3 × Z5 Z5 , Z3 abelian
16 Z16 Z8 , Z4 , Z2 abelian

Z24 15 × Z2, 35 × Dih2, 15 × Z23 abelian

Z4 × Z22 7 × Z2, 4 × Z4, 7 × Dih2, Z23, 6 × Z4 × Z2 abelian

Z8 × Z2 3 × Z2, 2 × Z4, Dih2, 2 × Z8, Z4 × Z2 abelian

Z42 3 × Z2, 6 × Z4, Dih2, 3 × Z4 × Z2 abelian

Dih8 Z8 , 2 × Dih4 , 4 × Dih2 , Z4 , 9 × Z2 non-abelian
edit
Dih4 × Z2 2 × Dih4 , Z4 × Z2 , 2 × Z23, 7 × Z22 , 2 × Z4 , 11 × Z2 non-abelian
Generalized quaternion group, Q16 = Dic4   non-abelian
Q8 × Z2   non-abelian, Hamiltonian
The order 16 quasidihedral group   non-abelian
The order 16 modular group   non-abelian
The semidirect product of Z4 and Z4 where one factor acts on the other by inversion   non-abelian
The group generated by the Pauli matrices   non-abelian
G4,4   non-abelian

[edit] Small groups library

The group theoretical computer algebra system GAP contains the "Small Groups library" which provides access to descriptions of the groups of "small" order. The groups are listed up to isomorphism. At present, the library contains the following groups:

  • those of order at most 2000 except for order 1024 (423 164 062 groups);
  • those of order 55 and 74 (92 groups);
  • those of order qn×p where qn divides 28, 36, 55 or 74 and p is an arbitrary prime which differs from q;
  • those whose order factorises into at most 3 primes.

It contains explicit descriptions of the available groups in computer readable format.

The library has been constructed and prepared by Hans Ulrich Besche, Bettina Eick and Eamonn O'Brien; see http://www.tu-bs.de/~hubesche/small.html .

[edit] See also

[edit] External links

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu