Nanoparticle
From Wikipedia, the free encyclopedia
Nanomaterials |
Fullerenes |
Other materials |
See also |
A nanoparticle (or nanopowder) is a microscopic particle with at least one dimension less than 100nm. Nanoparticle research is currently an area of intense scientific research, due to a wide variety of potential applications in biomedical, optical, and electronic fields. The National Nanotechnology Initiative of the United States government has driven huge amounts of state funding exclusively for nanoparticle research.
Contents |
[edit] Properties
Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.
The properties of materials change as their size approaches the nanoscale and as the percentage of atoms at the surface of a material becomes significant. For bulk materials larger than one micrometre the percentage of atoms at the surface is minuscule relative to the total number of atoms of the material. The interesting and sometimes unexpected properties of nanoparticles are partly due to the aspects of the surface of the material dominating the properties in lieu of the bulk properties.
Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50 nm scale. Copper nanoparticles smaller than 50 nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10 nm can switch their magnetisation direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visible properties because they are small enough to confine their electrons and produce quantum effects. For example gold nanoparticles appear deep red to black in solution.
Nanoparticles have a very high surface area to volume ratio. This provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering can take place at lower temperatures, over shorter time scales than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate complicates matters. The surface effects of nanoparticles also reduces the incipient melting temperature.
[edit] Classification
At the small end of the size range, nanoparticles are often referred to as clusters. Nanospheres, nanorods, and nanocups are just a few of the shapes that have been grown.
Metal, dielectric, and semiconductor nanoparticles have been formed, as well as hybrid structures (e.g., core-shell nanoparticles). Nanoparticles made of semiconducting material may also be labeled quantum dots if they are small enough (typically sub 10nm) that quantization of electronic energy levels occurs. Such nanoscale particles are used in biomedical applications as drug carriers or imaging agents.
Semi-solid and soft nanoparticles have been manufactured. A prototype nanoparticle of semi-solid nature is the liposome. Various types of liposome nanoparticles are currently used clinically as delivery systems for anticancer drugs and vaccines.
[edit] Characterization
Nanoparticle characterization is necessary to establish understanding and control of nanoparticle synthesis and applications. Characterization is done by using a variety of different techniques, mainly drawn from materials science. Common techniques are electron microscopy [TEM,SEM], atomic force microscopy [AFM], dynamic light scattering [DLS], x-ray photoelectron spectroscopy [XPS], powder x-ray diffractometry [XRD], and Fourier transform infrared spectroscopy [FTIR].
Whilst the theory has been known for over a century (see Robert Brown), the technology for Nanoparticle tracking analysis (NTA) allows direct tracking of the Brownian motion and this method therefore allows the sizing of individual nanoparticles in solution.
[edit] Fabrication of nanoparticles
There are several methods for creating nanoparticles; attrition and pyrolysis are common methods. In attrition, macro or micro scale particles are ground in a ball mill, a planetary ball mill, or other size reducing mechanism. The resulting particles are air classified to recover nanoparticle.
In pyrolysis, an organic precursor (liquid or gas) is forced through an orifice at high pressure and burned. The resulting ash is air classified to recover oxide nanoparticle.
A thermal plasma can also deliver the energy necessary to cause evaporation of small micron-size particles. The thermal plasma temperatures are in the order of 10000 K, so that solid powder easily evaporates. Nanoparticles are formed upon cooling while exiting the plasma region. The main types of the thermal plasmas torches used to produce nanoparticles are dc plasma jet, dc arc plasma and radio frequency (RF) induction plasmas. In the arc plasma reactors, the energy necessary for evaporation and reaction is provided by an electric arc which forms between the anode and the cathode. For example, silica sand can be vaporized with an arc plasma at atmospheric pressure. The resulting mixture of plasma gas and silica vapour can be rapidly cooled by quenching with oxygen, thus ensuring the quality of the fumed silica produced. In RF induction plasma torches, energy coupling to the plasma is accomplished through the electromagnetic field generated by the induction coil. The plasma gas does not come in contact with electrodes, thus eliminating possible sources of contamination and allowing the operation of such plasma torches with a wide range of gases including inert, reducing, oxidizing and other corrosive atmospheres. The working frequency is typically between 200 kHz and 40 MHz. Laboratory units run at power levels in the order of 30-50 kW while the large scale industrial units have been tested at power levels up to 1 MW. As the residence time of the injected feed droplets in the plasma is very short it is important that the droplet sizes are small enough in order to obtain complete evaporation. The RF plasma method has been used to synthesize different nanoparticle materials, for example synthesis of various ceramic nanoparticles such as oxides, carbours/carbides and nitrides of Ti and Si.
[edit] Safety Issues
Nanoparticles present possible dangers, both medically and environmentally. Most of these are due to the high surface to volume ratio, which can make the particles very reactive or catalytic. They may also be able to pass through cell walls in organisms, and their interactions with the body are relatively unknown. However, free nanoparticles in the environment quickly tend to agglomerate and thus leave the nano-regime, and nature itself presents many nanoparticles to which organisms on earth may have evolved immunity (such as salt particulates from ocean aerosols, terpenes from plants, or dust from volcanic erruptions). A fuller analysis is provided in the article on nanotechnology.
According to the San Francisco Chronicle, "Animal studies have shown that some nanoparticles can penetrate cells and tissues, move through the body and brain and cause biochemical damage. But whether cosmetics and sunscreens containing nanomaterials pose health risks remains largely unknown, pending completion of long-range studies recently begun by the FDA and other agencies."[1]
[edit] See also
- Quantum dot
- Nanocrystalline silicon
- Photonic crystal
- Nanotechnology
- Nanobiotechnology
- Liposome
- Nanomatter
- Grinding and Dispersing Nanoparticles
[edit] References
- Ostiguy, Claude; Lapointe, Gilles; Ménard, Luc; Cloutier, Yves; Trottier, Mylène; Boutin, Michel; Antoun, Monty; Normand, Christian, 2006,Studies and Research projects, Nanoparticles - Current Knowledge about Occupational Health and Safety Risks and Prevention Measures, ISBN 13:978-2-89631-062-3
Free download: http://www.irsst.qc.ca/files/documents/PubIRSST/R-470.pdf
- Ostiguy, Claude; Lapointe, Gilles; Trottier, Mylène; Ménard, Luc; Cloutier, Yves; Boutin, Michel; Antoun, Monty; Normand, Christian, 2006, Studies and Research Projects, Health Effects of Nanoparticles, ISBN 13:978-2-89631-060-9
Free download: http://www.irsst.qc.ca/files/documents/PubIRSST/R-469.pdf
- ^ Keay Davidson. "FDA urged to limit nanoparticle use in cosmetics and sunscreens", San Francisco Chronicle. Retrieved on April 20, 2007.