Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Navier-Stokes existence and smoothness - Wikipedia, the free encyclopedia

Navier-Stokes existence and smoothness

From Wikipedia, the free encyclopedia

Millennium Prize Problems
P versus NP
The Hodge conjecture
The Poincaré conjecture
The Riemann hypothesis
Yang–Mills existence and mass gap
Navier-Stokes existence and smoothness
The Birch and Swinnerton-Dyer conjecture

The Navier Stokes existence and smoothness equations describe the flow of nearly all practical fluids, but can be extremely complicated and difficult to solve. A $1,000,000 prize was offered in May 2000 by the Clay Mathematics Institute to whoever proves first the following statement about the Navier-Stokes equations.

Contents

[edit] Problem description

Let u(x, t) = (u_i(x, t))_{1 \le i \le 3} \mathcal{2} \mathbb{R}^3 be the unknown velocity vector field, defined for positions x \mathcal{2} \mathbb{R}^3 and times t \ge 0 and let p(x, t) \mathcal{2} \mathbb{R} be the unknown pressure, defined likewise.

Let f(x, t) = (f_i(x, t))_{1 \le i \le 3} \mathcal{2} \mathbb{R}^3 be a known external force, again defined for positions x \mathcal{2} \mathbb{R}^3 and times t \ge 0.

Also let u^\circ(x) be the known initial velocity vector field on \mathbb{R}^3, which is divergence-free on C.

Finally, let ν > 0 be a known constant (the viscosity).

Then the Navier-Stokes equations for incompressible viscous fluids filling \mathbb{R}^3 are given by \forall i \mathcal{2} {1, 2, 3}:

\frac{\partial u_i}{\partial t}  + \sum_{j=1}^3 u_j \frac{\partial u_i}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t)

(x \mathcal{2} \mathbb{R}^3, t \ge 0) (1)
\operatorname{div}\ u = \sum_{i=1}^3 \frac{\partial u_i}{\partial x_i} = 0 (x \mathcal{2} \mathbb{R}^3, t \ge 0) (2)

and the initial condition:

u(x,0) = u^\circ(x) (x \mathcal{2} \mathbb{R}^3) (3)

The problem then is to prove one of the following four statements:

[edit] Existence and smoothness of Navier-Stokes solutions on \mathbb{R}^3

Assume in addition that:

  • There are no external forces, i.e.:
( \forall x \mathcal{2} \mathbb{R}^3 )( \forall t \ge 0 )\ f(x, t) = 0
  • u^\circ is bounded, i.e.:
( \forall \alpha \mathcal{2} \mathbb{R} )( \forall K \mathcal{2} \mathbb{R} )( \exists C \mathcal{2} \mathbb{R} )( \forall x \mathcal{2} \mathbb{R}^3 )( \forall t \ge 0 )\ | \partial_x^\alpha u^\circ(x) | \le C(1 + |x|)^{-K}

Then there exists p \mathcal{2} C^\infty(\mathbb{R}^3 \times [0,\infty)) and u \mathcal{2} (C^\infty(\mathbb{R}^3 \times [0,\infty)))^3 that satisfy (1), (2) and (3) as well as having bounded energy, i.e.:

( \exists C \mathcal{2} \mathbb{R} )( \forall t \ge 0 )\ \int_{\mathbb{R}^3} |u(x, t)|^2 dx < C

[edit] Existence and smoothness of Navier-Stokes solutions on \mathbb{R}^3/\mathbb{Z}^3

Assume in addition that:

  • There are no external forces, i.e.:
( \forall x \mathcal{2} \mathbb{R}^3 )( \forall t \ge 0 )\ f(x, t) = 0
  • u^\circ is periodic, i.e.:
(\forall j \mathcal{2} {1, 2, 3})( \forall x \mathcal{2} \mathbb{R}^3 )\ u^\circ(x + e_j) = u^\circ(x), where ej is the jth unit vector in \mathbb{R}^3.

Then there exists p \mathcal{2} C^\infty(\mathbb{R}^3 \times [0,\infty)) and u \mathcal{2} (C^\infty(\mathbb{R}^3 \times [0,\infty)))^3 that satisfy (1), (2) and (3) and have a periodic u, i.e.:

( \forall x \mathcal{2} \mathbb{R}^3 )( \forall t \ge 0 )\ u(x, t) = u(x + e_j, t)

[edit] Breakdown of Navier-Stokes solutions on \mathbb{R}^3

There exists an f \mathcal{2} (C^\infty(\mathbb{R}^3))^3 and a divergence-free u^\circ \mathcal{2} (C^\infty(\mathbb{R}^3))^3 for which there are no p \mathcal{2} C^\infty(\mathbb{R}^3 \times [0,\infty)) and u \mathcal{2} (C^\infty(\mathbb{R}^3 \times [0,\infty)))^3 satisfying (1), (2), (3) and also having bounded energy, i.e.:

( \exists C \mathcal{2} \mathbb{R} )( \forall t \ge 0 )\ \int_{\mathbb{R}^3} |u(x, t)|^2 dx < C

[edit] Breakdown of Navier-Stokes solutions on \mathbb{R}^3/\mathbb{Z}^3

There exists an f \mathcal{2} (C^\infty(\mathbb{R}^3))^3 and a divergence-free u^\circ \mathcal{2} (C^\infty(\mathbb{R}^3))^3 for which there are no p \mathcal{2} C^\infty(\mathbb{R}^3 \times [0,\infty)) and u \mathcal{2} (C^\infty(\mathbb{R}^3 \times [0,\infty)))^3 satisfying (1), (2), (3) and also having a periodic u, i.e.:

( \forall x \mathcal{2} \mathbb{R}^3 )( \forall t \ge 0 )\ u(x, t) = u(x + e_j, t)

[edit] Background

The analogous problem for \mathbb{R}^2 has already been solved positively (it is known that there are smooth solutions on \mathbb{R}^2).

[edit] External links


This article contains public-domain material taken from QEDen.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu