Net (polyhedron)
From Wikipedia, the free encyclopedia
In geometry the net of a polyhedron is an arrangement of edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for models of polyhedra to be constructed from material such as thin cardboard.
Also, the shortest path over the surface between two points on the surface of a polyhedron corresponds to a straight line on a suitable net. The net has to be such that the straight line is fully within it, and one may have to consider several nets to see which gives the shortest path. For example, in the case of a cube, if the points are on adjacent faces one candidate for the shortest path is the path crossing the common edge; the shortest path of this kind is found using a net where the two faces are also adjacent. Other candidates for the shortest path are through the surface of a third face adjacent to both (of which there are two), and corresponding nets can be used to find the shortest path in each category.
[edit] Higher dimensional polytope nets
The geometric concept of a net can be extended to higher dimensions.
tesseract |
Truncated tesseract |
24-cell |
For example, a net of a polychoron, or four-dimensional polytope, is composed of polyhedral cells that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane.