New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Дискретное вейвлет-преобразование — Википедия

Дискретное вейвлет-преобразование

Материал из Википедии — свободной энциклопедии

В численном анализе и функциональном анализе дискретные вейвлет-преобразования (ДВП) относятся к вейвлет-преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками).

Первое ДВП было придумано венгерским математиком Альфредом Хааром. Для входного сигнала, представленного массивом 2n чисел, вейвлет-преобразование Хаара просто группирует элементы по 2 и образует от них суммы и разности. Группировка сумм проводится рекурсивно (в случае четной длины последовательности сумм) для образования следующего уровня разложения. В итоге получается 2n - 1 разность и 1 общая сумма.

Это простое ДВП иллюстрирует общие полезные свойства вейвлетов. Во-первых, преобразование (один уровень) можно выполнить за O(n) операций. Во-вторых, оно не только раскладывает сигнал на некоторое подобие частотных полос (путем анализа его в различных масштабах), но и представляет временную область, т.е. моменты возникновения тех или иных частот в сигнале. Вместе, эти свойства характеризуют быстрое вейвлет-преобразование - альтернативу обычному быстрому преобразованию Фурье.

Самый распространенный набор дискретных вейвлет-преобразований был сформулирован бельгийским математиком Ингрид Добеши (Ingrid Daubechies) в 1988 году. Он основан на использовании рекуррентных соотношений для вычисления все более точных выборок неявно заданной функции материнского вейвлета, с удвоением разрешения при переходе к следующему уровню (масштабу). В своей основополагающей работе Добеши выводит семейство вейвлетов, первый из которых является вейвлетом Хаара. С тех пор интерес к этой области быстро возрос, что привело к созданию многочисленных потомков исходного семейства вейвлетов Добеши.

Другие формы дискретного вейвлет-преобразования включают непрореженное вейвлет-преобразование (где не выполняется прореживания сигналов), преобразование Ньюлэнда (где ортонормированный базис вейвлетов выводится из специальным образом построенных фильтров типа "top-hat" в частотной области). Пакетные вейвлет-преобразования также связаны с ДВП. Другая форма ДВП - комплексное вейвлет-преобразование.

У дискретного вейвлет-преобразования много приложений в естественных науках, инженерном деле, математике (включая прикладную). Наиболее широко ДВП используется в кодировании сигналов, где свойства преобразования используются для уменьшения избыточности в представлении дискретных сигналов, часто - как первый этап в компрессии данных.

Содержание

[править] Определение

[править] Один уровень преобразования

ДВП сигнала x получают применением набора фильтров. Сначала сигнал пропускается через низкочастотный (low-pass) фильтр с импульсным откликом g, и получается свертка:

y[n] = (x * g)[n] = \sum\limits_{k =  - \infty }^\infty {x[k] g[n - k]}

Одновременно сигнал раскладывается с помощью высокочастотного (high-pass) фильтра h. В результате получаются детализирующие коэффициенты (после ВЧ-фильтра) и коэффициенты аппроксимации (после НЧ-фильтра). Эти два фильтра связаны между собой и называются квадратурными зеркальными фильтрами (QMF).

Так как половина частотного диапазона сигнала была отфильтрована, то, согласно теореме Котельникова, отсчеты сигналов можно проредить в 2 раза:

y_{\mathrm{low}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] g[2n - k]}
y_{\mathrm{high}} [n] = \sum\limits_{k =  - \infty }^\infty  {x[k] h[2n - k]}

Такое разложение вдвое уменьшило разрешение по времени в силу прореживания сигнала. Однако каждый из получившихся сигналов представляет половину частотной полосы исходного сигнала, так что частотное разрешение удвоилось. Это согласуется с принципом неопределенности Гейзенберга.

(схемы на русском - тут)

Схема разложения сигнала в ДВП
Схема разложения сигнала в ДВП

С помощью оператора прореживания \downarrow

(y \downarrow k)[n] = y[k n]

вышеупомянутые суммы можно записать короче:

y_{\mathrm{low}} = (x*g)\downarrow 2
y_{\mathrm{high}} = (x*h)\downarrow 2

Вычисление полной свертки x * g с последующим прореживанием - это излишняя трата вычислительных ресурсов.

Схема лифтинга является оптимизацией, основанной на чередовании этих двух вычислений.

[править] Каскадирование и банки фильтров

Это разложение можно повторить несколько раз для дальнейшего увеличения частотного разрешения, с дальнейшим прореживанием коэффициентов после НЧ и ВЧ-фильтрации. Это можно представить в виде двоичного дерева, где листья и узлы соответствуют пространствам с различной частотно-временной локализацией. Это дерево представляет структуру банка (гребенки) фильтров.

Трехуровневый банк (гребенка) фильтров
Трехуровневый банк (гребенка) фильтров

На каждом уровне вышеприведенной диаграммы сигнал раскладывается на низкие и высокие частоты. В силу двукратного прореживания, длина сигнала должна быть кратна 2n, где n - число уровней разложения.

Например, для сигнала из 32 отсчетов с частотным диапазоном от 0 до fn трехуровневое разложение даст 4 выходных сигнала в разных масштабах:

Уровень Частоты Длина сигнала
3 0 ... fn / 8 4
fn / 8 ... fn / 4 4
2 fn / 4 ... fn / 2 8
1 fn / 2 ... fn 16
Представление ДВП в частотной области
Представление ДВП в частотной области

[править] Пример программы

Ниже приведен пример ДВП-разложения (один уровень), показывающий простоту его вычисления.

Это вейвлет Хаара (Haar wavelet), написанный на Java:

   public static int[] invoke(int[] input){
       //WARNING: This will destroy the contents of the input array
       //This function assumes input.length=2^n, n>1
       int[] output = new int[input.length];
       
       for(int length = input.length >> 1; ; length >>= 1){
       //length=2^n, WITH DECREASING n
           for(int i = 0; i < length; i++) {
               int sum = input[i*2]+input[i*2+1];
               int difference = input[i*2]-input[i*2+1];
               output[i] = sum;
               output[length+i] = difference;
           }
           if (length == 1) 
               return output;
           
           //Swap arrays to do next iteration
           System.arraycopy(output, 0, input, 0, length<<1);
       }
   }

Реализацию быстрого лифтинга дискретного биортогонального CDF 9/7 вейвлета на C, используемого в алгоритме сжатия изображений JPEG-2000, можно найти здесь.

[править] Литература

Stéphane Mallat, A Wavelet Tour of Signal Processing

[править] См. также


 
На других языках

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu