New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Комптонов ефекат - Википедија

Комптонов ефекат

Из пројекта Википедија

Комптонов ефекат је расејање фотона са атома при чему фотон губи део енергије, тј., мења таласну дужину. Ефекат је значајан јер је потврдио корпускуларну (честичну) природу светлости. Може квантитативно да се објасни ако се представи као игра билијара фотона и електрона. За откриће и објашњење ефекта Комптон је добио Нобелову награду за физику 1927. године.

Овај ефекат је био важан за развој модерне физике јер је показао да светлост не може у потпуности да се опише као таласна појава. Класична теорија расејања електромагнетних таласа са наелектрисане честице не може да објасни промену таласне дужине расејаног зрака. За објашњење Комптоновог расејања неопходно је узети у обзир честичну природу светлости. Комптонов експеримент је најзад уверио физичаре да се светло понаша и као млаз честица чија је енергија пропорционална фреквенцији.

Комптоново расејање се јавља на свим материјалима, највише са фотонима средњих енергија, 0,5 до 3,5 MeV.


Садржај

[уреди] Једначина за Комптонов помак

Комптоново расејање (у систему у којем мета мирује)
Комптоново расејање (у систему у којем мета мирује)

Да би објаснио појаву, Комптон је употребио три основне формуле класичне и модерне физике:

те је добио следећу једначину Комптоновог рассејања:

\lambda_2 = \frac{h}{m_e c}(1-\cos{\theta}) + \lambda_1

где је

λ1 таласна дужина фотона пре судара,
λ2 таласна дужина фотона после расејања,
me маса електрона,
h/(mec) Комптонова таласна дужина,
θ угао скретања фотона,
h Планкова константа, и
c брзина светлости.

Комптонова таласна дужина износи 2,43×10-12 метара.

[уреди] Извођење

Полазимо од закона о одржању енергије:

E_{\gamma} + E_{e} = E_{\gamma'} + E_{e'}\,

где је Eγ енергија фотона пре судара а Ee енергија фотона пре судара — једнака његовој маси мировања. Променљиве са примом (') означавају стање након судара.

Исто треба да важи и закон о одржању момента:

\vec p_{\gamma} + \vec{p_{e}} = \vec{p_{\gamma'}} + \vec{p_{e'}}\,

где, због једноставности, подразумевамо да електрон пре судара мирује па pe = 0

Користећи везу између енергије и фреквенције, и енергије и импулса E = hf = pc из горњег израза налазимо:

\vec{p_{e'}} = \vec{p_{\gamma}} - \vec{p_{\gamma'}}\,
{\vec{p_{e'}}}^2 = {(\vec{p_{\gamma}} - \vec{p_{\gamma'}})}^2
{\vec{p_{e'}}}^2 = \vec{p_{\gamma}}^2 - 2\cdot\vec{p_{\gamma}}\cdot\vec{p_{\gamma'}} + \vec{p_{\gamma'}}^2
\vec{p_{e'}} \cdot \vec{p_{e'}} = \vec{p_{\gamma}} \cdot \vec{p_{\gamma} 2\cdot\vec{p_{\gamma}}\cdot\vec{p_{\gamma'}} + \vec{p_{\gamma'}} \cdot \vec{p_{\gamma'}}}-
{p_{e'}}^2 \cdot \cos(0) = p_{\gamma}^2 \cdot \cos(0) - 2 \cdot p_{\gamma} \cdot p_{\gamma'} \cdot \cos(\theta) + p_{\gamma'}^2\cdot \cos(0)

Косинусни члан, cos(θ), се јавља јер фотон мења правац кретања па је за слагање момената потребно узети у обзир угао међу њима.
Замењивањем pγ са \frac{hf}{c} и pγ' са \frac{hf'}{c}, налазимо

p_{e'}^2 = \frac{h^2 f^2}{c^2} + \frac{h^2 f'^2}{c^2} - \frac{2h^2 ff'\cos{\theta}}{c^2}

Сада трансформишемо енергијски део:

E_{\gamma} + E_{e} = E_{\gamma'} + E_{e'}\,
hf + mc^2 = hf' + \sqrt{(p_{e'}c)^2 + (mc^2)^2}\,

и решавамо га по pe':

(hf + mc^2-hf')^2 = (p_{e'}c)^2 + (mc^2)^2\,
\frac{(hf + mc^2-hf')^2 -m^2c^4}{c^2}= p_{e'}^2\,

Сада имамо две различита израза за p_{e'}^2, која смемо да изједначимо:

\frac{(hf + mc^2-hf')^2 -m^2c^4}{c^2} = \frac{h^2 f^2}{c^2} + \frac{h^2 f'^2}{c^2} - \frac{2h^2 ff'\cos{\theta}}{c^2}

Сада је само питање преуређивања:

h^2f^2+h^2f'^2-2h^2ff'+2h(f-f')mc^2 = h^2f^2+h^2f'^2-2h^2ff'\cos{\theta}\,
-2h^2ff'+2h(f-f')mc^2 = -2h^2ff'\cos{\theta}\,
hff'-(f-f')mc^2 = hff'\cos{\theta}\,
hff'(1-\cos{\theta}) = (f-f')mc^2\,
h\frac{c}{\lambda'}\frac{c}{\lambda}(1-\cos{\theta}) =\left(\frac{c}{\lambda\frac{c}{\lambda'}\right)mc^2}-
h\frac{c}{\lambda'}\frac{c}{\lambda}(1-\cos{\theta}) = \left(\frac{c\lambda'}{\lambda\lambda'\frac{c\lambda}{\lambda'\lambda}\right)mc^2}-
h(1-\cos{\theta}) = \frac{\lambda'}{c}\frac{\lambda}{c}\left(\frac{c\lambda'}{\lambda'\lambda\frac{c\lambda}{\lambda\lambda'}\right)mc^2}-
h(1-\cos{\theta}) = \left(\frac{\lambda'}{c\frac{\lambda}{c}\right)mc^2}-
\frac{h}{mc}(1-\cos{\theta}) =\lambda'-\lambda

Дакле, након судара са електроном у атому, фотон мења правац (угао θ) и таласну дужину од λ у λ' избијајући из атома електрон који односи део првобитне енергије фотона.

[уреди] Примене

Комптоново расејање је од прворазредног значаја у радиологији јер је то највероватнији механизам међуделовања високоенергијских Х-зрака и атома у ткиву и користи се у радијационој терапији.

У истраживањима, Комптоново расејање се користи за испитивање електронског омотача у атому.


[уреди] Види још

[уреди] Литература

  • С. Мацура, Ј. Радић-Перић, АТОМИСТИКА, Факултет за физичку хемију Универзитета у Београду/Службени лист, Београд, 2004, стр. 267.

[уреди] Спољашње везе

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu