New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Трапезоидно правило - Википедија

Трапезоидно правило

Из пројекта Википедија

Пример трапезоидног правила
Пример трапезоидног правила

Трапезоидним правилом се служимо када нас интересује приближна вредност неког одређеног интеграла \int_a^b f(x) dx. Идеја која стоји иза овог правила је апроксимација фунцкије f(x) дужи од тачке (a,f(a)) до (b,f(b)). Она је једна од Њутн-Коутс формула. Оно је једно од најчешћих правила које срећемо у пракси, пре свега због своје једноставности, а посебно је погодна за периодичне функције.

f(x) \approx \frac{ f(b) - f(a) }{ b-a } \cdot x + f(a)
\int_a^b f(x) dx \approx \int_a^b \frac{ f(b) - f(a) }{ b-a } \cdot x + f(a) dx
\int_a^b f(x) dx \approx (b-a)\frac{f(a) + f(b)}{2}

[уреди] Грешка

Грешка при оваквој апроксимацији је:

\left| E_T \right| \le {(b-a)^3 \over 12} \max_{a\le \xi \le b} {\left| f''(\xi) \right|}

До овог резултата смо дошли путем Тејлорових редова. Тејлоров ред функција око тачке a\, изгледа овако:

f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2 f''(a)}{2!} + \dots

Односно за тачку b\,:

f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2 f''(a)}{2!} + \dots

Применимо трапезоидно правило на интеграл (апроксимација интеграла је обележена црвеном бојом, а тачан интеграл плавом):

{\color{blue} \int_a^b f(x) dx} \approx {\color{red} \frac{h}{2} ( f(a) + f(b) )} = {\color{red} \frac{h}{2} ( f(a) + \underbrace{f(a)+ (b-a)f'(a) + \frac{(b-a)^2 f''(a)}{2!} + \dots}_{f(b)} )}

Погледајмо прецизан интеграл:

{\color{blue} \int_a^b f(x) dx} = {\color{blue}\int_a^b \underbrace{f(a) + (x-a)f'(a) + \frac{(x-a)^2 f''(a)}{2!} + \dots}_{f(x)} dx }
= {\color{blue} \int_a^b f(a) dx + \int_a^b (x-a)f'(a) dx + \int_a^b \frac{(x-a)^2 f''(a)}{2!}dx + \int_a^b \dots dx}
= {\color{blue} (b-a)f(a) + \frac{ (b-a)^2 f'(a) }{2} + \frac{ (b-a)^3 f''(a) } {6} + \dots }

Њихова разлика је наравно грешка:

{\color{blue} \int_a^b f(x) dx } - {\color{red} \frac{h}{2} ( f(a) + f(b) ) } =
= {\color{blue} (b-a)f(a) + \frac{ (b-a)^2 f'(a) }{2} + \frac{ (b-a)^3 f''(a) } {6} + \dots }
- {\color{red} \frac{h}{2} ( f(a) + f(a)+ (b-a)f'(a) + \frac{(b-a)^2 f''(a)}{2!} + \dots )} =
= -\frac{(b-a)^3}{12} f''(a) + \dots

Очигледно је да за h \geq 1\, грешка расте до бесконачности (јер је реч о бесконачном Тејлоровом реду!), али за h<1\, је све мања што "се даље иде". Зато је најчешће овај израз једино и записан као једини релевантан.

[уреди] Сложено трапезоидно правило

Када смо незадовољни резултатом, интервал можемо поделити на више мањих, за сваки појединачно израчунати приближну вредност интеграла трапезоидним правилом и после их све заједно сабрати. Тиме добијамо сложено трапезоидно правило:

\int_a^b f(x)\,dx \approx \frac{b-a}{n} \left( {f(a) + f(b) \over 2} + \sum_{k=1}^{n-1} f \left( a+k \frac{b-a}{n} \right) \right),

што такође можемо написати као:

\int_a^b f(x)\,dx \approx \frac{b-a}{2n} \left(f(x_0) + 2f(x_1) + 2f(x_2)+\dots+2f(x_{n-1}) + f(x_n) \right).

Када означимо број тачака са n, a размак између њих са h = \frac{b-a}{n}, онда је грешка сложеног трапезоидног правила:

\left| E_T \right| \le {(b-a) \over 12}h^2 \max_{a\le \xi \le b} {\left| f''(\xi) \right|}

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu